Abstract
Advancing inverted perovskite solar cells requires effective strategies to mitigate nonradiative recombination at the perovskite/C60 interface. Here, we report a volatile material that forms a thin, dense interlayer that essentially eliminates the C60-induced nonradiative interfacial recombination loss despite not directly passivating the perovskite surface. Ultraviolet photoelectron spectroscopy highlights that the molecule forms a positive dipole layer on the surface that aligns the perovskite and C60 energy levels for electron conduction. Furthermore, the molecule’s volatile nature allows the use of a high-concentration solution that enables a high surface coverage (likely >99%) without increasing the thickness. The combination of these two effects yields an effective approach to suppressing interface recombination. The resulting triple cation perovskite solar cells achieved a power conversion efficiency of >25% and the devices maintain >90% of their initial efficiency after 1200 h of operation. Furthermore, the molecule is broadly applicable to various perovskite compositions and bandgaps.
Original language | English |
---|---|
Pages (from-to) | 2942-2951 |
Number of pages | 10 |
Journal | ACS Energy Letters |
DOIs | |
State | Accepted/In press - 2025 |
Bibliographical note
Publisher Copyright:© 2025 The Authors. Published by American Chemical Society.