TY - JOUR
T1 - Minimizing tardiness scheduling measures with generalized due-dates and a maintenance activity
AU - Atsmony, Matan
AU - Mor, Baruch
AU - Mosheiov, Gur
N1 - Publisher Copyright:
© 2022 Elsevier Ltd
PY - 2023/4
Y1 - 2023/4
N2 - We study single machine scheduling problems with the following features: (i) Generalized due-dates are considered, i.e., the j-th due-date is assigned to the j-th completed job; (ii) A fixed maintenance activity during which no production is feasible is assumed; (iii) The objective functions are minimizing various tardiness measures. Specifically, four objective functions are considered: total tardiness, maximum tardiness, the number of tardy jobs and total late work. We introduce pseudo-polynomial solution algorithms for these NP-hard problems. Our numerical tests indicate that instances of medium size of all four problems are solved in very reasonable running times.
AB - We study single machine scheduling problems with the following features: (i) Generalized due-dates are considered, i.e., the j-th due-date is assigned to the j-th completed job; (ii) A fixed maintenance activity during which no production is feasible is assumed; (iii) The objective functions are minimizing various tardiness measures. Specifically, four objective functions are considered: total tardiness, maximum tardiness, the number of tardy jobs and total late work. We introduce pseudo-polynomial solution algorithms for these NP-hard problems. Our numerical tests indicate that instances of medium size of all four problems are solved in very reasonable running times.
KW - A maintenance activity
KW - Generalized due dates
KW - Scheduling
KW - Single machine
KW - Total tardiness
UR - http://www.scopus.com/inward/record.url?scp=85145968432&partnerID=8YFLogxK
U2 - 10.1016/j.cor.2022.106133
DO - 10.1016/j.cor.2022.106133
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85145968432
SN - 0305-0548
VL - 152
SP - 106133
JO - Computers and Operations Research
JF - Computers and Operations Research
M1 - 106133
ER -