TY - JOUR
T1 - Minocycline effectively protects the rabbit's spinal cord from aortic occlusion-related Ischemia
AU - Drenger, Benjamin
AU - Fellig, Yakov
AU - Ben-David, Dror
AU - Mintz, Bella
AU - Idrees, Suhel
AU - Or, Omer
AU - Kaplan, Leon
AU - Ginosar, Yehuda
AU - Barzilay, Yair
N1 - Publisher Copyright:
© 2016 Elsevier Inc. All rights reserved.
PY - 2016/4/1
Y1 - 2016/4/1
N2 - Objectives To identify the minocycline anti-inflammatory and antiapoptotic mechanisms through which it is believed to exert spinal cord protection during aortic occlusion in the rabbit model. Design An animal model of aortic occlusion-related spinal cord ischemia. Randomized study with a control group and pre-ischemia and post-ischemia escalating doses of minocycline to high-dose minocycline in the presence of either hyperglycemia, a pro-apoptotic maneuver, or wortmannin, a specific phosphatidylinositol 3-kinase antagonist. Setting Tertiary medical center and school of medicine laboratory. Participants Laboratory animals-rabbits. Interventions Balloon obstruction of infrarenal aorta introduced via femoral artery incision. Results Severe hindlimb paralysis (mean Tarlov score 0.36±0.81 out of 3) was observed in all the control group animals (9 of 11 with paraplegia and 2 of 11 with paraparesis) compared with 11 of 12 neurologically intact animals (mean Tarlov score 2.58±0.90 [p = 0.001 compared with control]) in the high-dose minocycline group. This protective effect was observed partially during a state of hyperglycemia and was completely abrogated by wortmannin. Minocycline administration resulted in higher neurologic scores (p = 0.003) and a shift to viable neurons and more apoptotic-stained nuclei resulting from reduced necrosis (p = 0.001). Conclusions In a rabbit model of infrarenal aortic occlusion, minocycline effectively reduced paraplegia by increasing the number of viable neurons in a dose-dependent manner. Its action was completely abrogated by inhibiting the phosphatidylinositol 3-kinase pathway and was inhibited partially by the pro-apoptotic hyperglycemia maneuver, indicating that the activation of cell salvage pathways and mitochondrial sites are possible targets of minocycline action in an ischemic spinal cord.
AB - Objectives To identify the minocycline anti-inflammatory and antiapoptotic mechanisms through which it is believed to exert spinal cord protection during aortic occlusion in the rabbit model. Design An animal model of aortic occlusion-related spinal cord ischemia. Randomized study with a control group and pre-ischemia and post-ischemia escalating doses of minocycline to high-dose minocycline in the presence of either hyperglycemia, a pro-apoptotic maneuver, or wortmannin, a specific phosphatidylinositol 3-kinase antagonist. Setting Tertiary medical center and school of medicine laboratory. Participants Laboratory animals-rabbits. Interventions Balloon obstruction of infrarenal aorta introduced via femoral artery incision. Results Severe hindlimb paralysis (mean Tarlov score 0.36±0.81 out of 3) was observed in all the control group animals (9 of 11 with paraplegia and 2 of 11 with paraparesis) compared with 11 of 12 neurologically intact animals (mean Tarlov score 2.58±0.90 [p = 0.001 compared with control]) in the high-dose minocycline group. This protective effect was observed partially during a state of hyperglycemia and was completely abrogated by wortmannin. Minocycline administration resulted in higher neurologic scores (p = 0.003) and a shift to viable neurons and more apoptotic-stained nuclei resulting from reduced necrosis (p = 0.001). Conclusions In a rabbit model of infrarenal aortic occlusion, minocycline effectively reduced paraplegia by increasing the number of viable neurons in a dose-dependent manner. Its action was completely abrogated by inhibiting the phosphatidylinositol 3-kinase pathway and was inhibited partially by the pro-apoptotic hyperglycemia maneuver, indicating that the activation of cell salvage pathways and mitochondrial sites are possible targets of minocycline action in an ischemic spinal cord.
KW - hyperglycemia
KW - induced cord ischemia
KW - minocycline
KW - neuroprotection
KW - phosphatidylinositol 3-kinase pathway rabbit model
UR - http://www.scopus.com/inward/record.url?scp=84957082927&partnerID=8YFLogxK
U2 - 10.1053/j.jvca.2015.11.003
DO - 10.1053/j.jvca.2015.11.003
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 26853309
AN - SCOPUS:84957082927
SN - 1053-0770
VL - 30
SP - 282
EP - 290
JO - Journal of Cardiothoracic and Vascular Anesthesia
JF - Journal of Cardiothoracic and Vascular Anesthesia
IS - 2
ER -