TY - JOUR
T1 - MiR-210 and GPD1L regulate EDN2 in primary and immortalized human granulosa-lutein cells
AU - Shrestha, Ketan
AU - Onasanya, Adepeju Esther
AU - Eisenberg, Iris
AU - Wigoda, Noa
AU - Yagel, Simcha
AU - Yalu, Ronit
AU - Meidan, Rina
AU - Imbar, Tal
N1 - Publisher Copyright:
© 2018 Society for Reproduction and Fertility.
PY - 2018
Y1 - 2018
N2 - Endothelin-2 (EDN2), expressed at a narrow window during the periovulatory period, critically affects ovulation and corpus luteum (CL) formation. LH (acting mainly via cAMP) and hypoxia are implicated in CL formation; therefore, we aimed to elucidate how these signals regulate EDN2 using human primary (hGLCs) and immortalized (SVOG) granulosa-lutein cells. The hypoxiamiR, microRNA-210 (miR-210) was identified as a new essential player in EDN2 expression. Hypoxia (either mimetic compound-CoCl2, or low O2) elevated hypoxia-inducible factor 1A (HIF1A), miR-210 and EDN2. Hypoxia-induced miR-210 was suppressed in HIF1A-silenced SVOG cells, suggesting that miR-210 is HIF1A dependent. Elevated miR-210 levels in hypoxia or by miR-210 overexpression, increased EDN2. Conversely, miR-210 inhibition reduced EDN2 levels, even in the presence of CoCl2, indicating the importance of miR-210 in the hypoxic induction of EDN2. A molecule that destabilizes HIF1A protein, glycerol-3-phosphate dehydrogenase 1-like gene-GPD1L, was established as a miR-210 target in both cell types. It was decreased by miR-210-mimic and was increased by miR-inhibitor. Furthermore, reducing GPD1L by endogenously elevated miR-210 (in hypoxia), miR-210-mimic or by GPD1L siRNA resulted in elevated HIF1A protein and EDN2 levels, implying a vital role for GPD1L in the hypoxic induction of EDN2. Under normoxic conditions, forskolin (adenylyl cyclase activator) triggered changes typical of hypoxia. It elevated HIF1A, EDN2 and miR-210 while inhibiting GPD1L. Furthermore, HIF1A silencing greatly reduced forskolin's ability to elevate EDN2 and miR-210. This study highlights the novel regulatory roles of miR-210 and its gene target, GPD1L, in hypoxia and cAMP-induced EDN2 by human granulosa-lutein cells.
AB - Endothelin-2 (EDN2), expressed at a narrow window during the periovulatory period, critically affects ovulation and corpus luteum (CL) formation. LH (acting mainly via cAMP) and hypoxia are implicated in CL formation; therefore, we aimed to elucidate how these signals regulate EDN2 using human primary (hGLCs) and immortalized (SVOG) granulosa-lutein cells. The hypoxiamiR, microRNA-210 (miR-210) was identified as a new essential player in EDN2 expression. Hypoxia (either mimetic compound-CoCl2, or low O2) elevated hypoxia-inducible factor 1A (HIF1A), miR-210 and EDN2. Hypoxia-induced miR-210 was suppressed in HIF1A-silenced SVOG cells, suggesting that miR-210 is HIF1A dependent. Elevated miR-210 levels in hypoxia or by miR-210 overexpression, increased EDN2. Conversely, miR-210 inhibition reduced EDN2 levels, even in the presence of CoCl2, indicating the importance of miR-210 in the hypoxic induction of EDN2. A molecule that destabilizes HIF1A protein, glycerol-3-phosphate dehydrogenase 1-like gene-GPD1L, was established as a miR-210 target in both cell types. It was decreased by miR-210-mimic and was increased by miR-inhibitor. Furthermore, reducing GPD1L by endogenously elevated miR-210 (in hypoxia), miR-210-mimic or by GPD1L siRNA resulted in elevated HIF1A protein and EDN2 levels, implying a vital role for GPD1L in the hypoxic induction of EDN2. Under normoxic conditions, forskolin (adenylyl cyclase activator) triggered changes typical of hypoxia. It elevated HIF1A, EDN2 and miR-210 while inhibiting GPD1L. Furthermore, HIF1A silencing greatly reduced forskolin's ability to elevate EDN2 and miR-210. This study highlights the novel regulatory roles of miR-210 and its gene target, GPD1L, in hypoxia and cAMP-induced EDN2 by human granulosa-lutein cells.
UR - http://www.scopus.com/inward/record.url?scp=85041666555&partnerID=8YFLogxK
U2 - 10.1530/REP-17-0574
DO - 10.1530/REP-17-0574
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 29301980
AN - SCOPUS:85041666555
SN - 1470-1626
VL - 155
SP - 197
EP - 205
JO - Reproduction
JF - Reproduction
IS - 2
ER -