Mirror-Image Random Nonstandard Peptides Integrated Discovery (MI-RaPID) Technology Yields Highly Stable and Selective Macrocyclic Peptide Inhibitors for Matrix Metallopeptidase 7

Hiba Ghareeb, Choi Yi Li, Anjana Shenoy, Naama Rotenberg, Julia M. Shifman, Takayuki Katoh, Irit Sagi*, Hiroaki Suga*, Norman Metanis*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Matrix metallopeptidase 7 (MMP7) plays a crucial role in cancer metastasis and progression, making it an attractive target for therapeutic development. However, the development of selective MMP7 inhibitors is challenging due to the conservation of active sites across various matrix metalloproteinases (MMPs). Here, we have developed mirror-image random nonstandard peptides integrated discovery (MI-RaPID) technology to discover innate protease-resistant macrocyclic peptides that specifically bind to and inhibit human MMP7. One identified macrocyclic peptide against D-MMP7, termed D20, was synthesized in its mirror-image form, D’20, consisting of 12 D-amino acids, one cyclic β-amino acid, and a thioether bond. Notably, it potently inhibited MMP7 with an IC50 value of 90 nM, and showed excellent selectivity over other MMPs with similar substrate specificity. Moreover, D’20 inhibited the migration of pancreatic cell line CFPAC-1, but had no effect on the cell proliferation and viability. D’20 exhibited excellent stability in human serum, as well as in simulated gastric and intestinal fluids. This study highlights that MI-RaPID technology can serve as a powerful tool to develop in vivo stable macrocyclic peptides for therapeutic applications.

Original languageEnglish
JournalAngewandte Chemie - International Edition
DOIs
StateAccepted/In press - 2024

Bibliographical note

Publisher Copyright:
© 2024 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH.

Keywords

  • Chemical protein synthesis
  • matrix metalloproteinases
  • Mirror image proteins
  • Native chemical ligation
  • Random Nonstandard Peptides Integrated Discovery (RaPID)

Fingerprint

Dive into the research topics of 'Mirror-Image Random Nonstandard Peptides Integrated Discovery (MI-RaPID) Technology Yields Highly Stable and Selective Macrocyclic Peptide Inhibitors for Matrix Metallopeptidase 7'. Together they form a unique fingerprint.

Cite this