Abstract
We propose a data structure that captures global geometric properties in images: Histogram of Mirror Symmetry Coefficients. We compute such a coefficient for every pair of pixels, and group them in a 6-dimensional histogram. By marginalizing the HMSC in various ways, we develop algorithms for a range of applications: detection of nearly-circular cells, location of the main axis of reflection symmetry, detection of cell-division in movies of developing embryos, detection of worm-tips and indirect cell-counting via supervised classification. Our approach generalizes a series of histogram-related methods, and the proposed algorithms perform with state-of-the-art accuracy.
Original language | English |
---|---|
Title of host publication | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
Publisher | IEEE Computer Society |
Pages | 2981-2986 |
Number of pages | 6 |
ISBN (Electronic) | 9781479951178, 9781479951178 |
DOIs | |
State | Published - 24 Sep 2014 |
Event | 27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014 - Columbus, United States Duration: 23 Jun 2014 → 28 Jun 2014 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
ISSN (Print) | 1063-6919 |
Conference
Conference | 27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014 |
---|---|
Country/Territory | United States |
City | Columbus |
Period | 23/06/14 → 28/06/14 |
Bibliographical note
Publisher Copyright:© 2014 IEEE.
Keywords
- biology
- cell
- circle fitting
- geometric representation
- histogram
- hough transform
- mirror symmetry