TY - JOUR
T1 - Mitochondrial performance in heat acclimation-A lesson from ischemia/reperfusion and calcium overload insults in the heart
AU - Assayag, Miri
AU - Saada, Ann
AU - Gerstenblith, Gary
AU - Canaana, Haifa
AU - Shlomai, Rivka
AU - Horowitz, Michal
PY - 2012/10/15
Y1 - 2012/10/15
N2 - Long-term heat acclimation (LTHA; 30 days, 34°C) causes phenotypic adaptations that render protection against ischemic/reperfusion insult (I/R, 30 min global ischemia and 40 min reperfusion) via heat acclimation-mediated cross-tolerance (HACT) mechanisms. Short-term acclimation (STHA, 2 days, 34°C), in contrast, is characterized by cellular perturbations, leading to increased susceptibility to insults. Here, we tested the hypothesis that enhanced mitochondrial respiratory function is part of the acclimatory repertoire and that the 30-day regimen is required for protection via HACT. We subjected isolated hearts and mitochondria from controls (C), STHA, or LTHA rats to I/R, hypoxia/reoxygenation, or Ca2+ overload insults. Mitochondrial function was assessed by measuring O2 consumption membrane potential (ΔΨm), mitochondrial Ca2+ ([Ca2+]m), ATP production, respiratory chain complex activities, and molecular markers of mitochondrial biogenesis. Our results, combining physiological and biochemical parameters, confirmed that mitochondria from LTHA rats subjected to insults, in contrast to C, preserve respiratory functions (e.g., upon I/R, C mitochondria fueled by glutamate-malate, demonstrated decreases of 81%, 13%, 25%, and 50% in O2/P ratio, ATP production, ΔΨm, and complex I activity, respectively, whereas the corresponding LTHA parameters remained unchanged). STHA mitochondria maintained ΔΨm but did not preserve ATP production. LTHA [Ca2+]m was significantly higher than that of C and STHA and was not affected by the hypoxia/reoxygenation protocol compared with C. Enhanced mitochondrial biogenesis markers, switched-on during STHA coincidentally with enhanced membrane integrity (ΔΨm), were insufficient to confer intact respiratory function upon insult. LTHA was required for respiratory complex I adaptation and HACT. Stabilized higher basal [Ca2+]m and attenuated Ca2+ overload are likely connected to this adaptation.
AB - Long-term heat acclimation (LTHA; 30 days, 34°C) causes phenotypic adaptations that render protection against ischemic/reperfusion insult (I/R, 30 min global ischemia and 40 min reperfusion) via heat acclimation-mediated cross-tolerance (HACT) mechanisms. Short-term acclimation (STHA, 2 days, 34°C), in contrast, is characterized by cellular perturbations, leading to increased susceptibility to insults. Here, we tested the hypothesis that enhanced mitochondrial respiratory function is part of the acclimatory repertoire and that the 30-day regimen is required for protection via HACT. We subjected isolated hearts and mitochondria from controls (C), STHA, or LTHA rats to I/R, hypoxia/reoxygenation, or Ca2+ overload insults. Mitochondrial function was assessed by measuring O2 consumption membrane potential (ΔΨm), mitochondrial Ca2+ ([Ca2+]m), ATP production, respiratory chain complex activities, and molecular markers of mitochondrial biogenesis. Our results, combining physiological and biochemical parameters, confirmed that mitochondria from LTHA rats subjected to insults, in contrast to C, preserve respiratory functions (e.g., upon I/R, C mitochondria fueled by glutamate-malate, demonstrated decreases of 81%, 13%, 25%, and 50% in O2/P ratio, ATP production, ΔΨm, and complex I activity, respectively, whereas the corresponding LTHA parameters remained unchanged). STHA mitochondria maintained ΔΨm but did not preserve ATP production. LTHA [Ca2+]m was significantly higher than that of C and STHA and was not affected by the hypoxia/reoxygenation protocol compared with C. Enhanced mitochondrial biogenesis markers, switched-on during STHA coincidentally with enhanced membrane integrity (ΔΨm), were insufficient to confer intact respiratory function upon insult. LTHA was required for respiratory complex I adaptation and HACT. Stabilized higher basal [Ca2+]m and attenuated Ca2+ overload are likely connected to this adaptation.
KW - ATP production
KW - Mitochondrial biogenesis
KW - Mitochondrial Ca
KW - Mitochondrial membrane potential
KW - Respiratory chain complex activity
UR - http://www.scopus.com/inward/record.url?scp=84867701235&partnerID=8YFLogxK
U2 - 10.1152/ajpregu.00155.2012
DO - 10.1152/ajpregu.00155.2012
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 22895744
AN - SCOPUS:84867701235
SN - 0363-6119
VL - 303
SP - R870-R881
JO - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
JF - American Journal of Physiology - Regulatory Integrative and Comparative Physiology
IS - 8
ER -