Abstract
A new model that is capable of predicting and explaining the effect of cyclic loading on the apparent fracture toughness of materials was developed. The model combines macroscopic fracture criteria with the assumption that transient flow properties of material in the cyclic plastic zone can be simulated by those of macroscopic low cycle fatigue specimens, tested in reversed strain control. Little or no changes in the cleavage fracture toughness due to cyclic loading is predicted or observed for materials that cycle strain harden (e.g., rail steel) and in the fracture toughness of other materials that cycle strain harden (e.g., the commercial 2000 series Al-Cu alloys) and fracture by rupture. However, an increase in the fracture toughness is predicted and observed for materials that cycle strain soften (e.g., 1Cr-Mo-V and 18 Ni 300 maraging steels), irrespective of fracture mode (cleavage or rupture). The changes in the fracture toughness are predicted and observed to increase with both the number of cycles of applied load and the reversed plastic strain range (or stress intensity range for precracked specimens).
Original language | English |
---|---|
Pages (from-to) | 67-80 |
Number of pages | 14 |
Journal | International Journal of Fracture |
Volume | 19 |
Issue number | 1 |
DOIs | |
State | Published - May 1982 |
Externally published | Yes |