TY - JOUR
T1 - Modification of the pH profile and tetrabenazine sensitivity of rat VMAT1 by replacement of aspartate 404 with glutamate
AU - Steiner-Mordoch, Sonia
AU - Shirvan, Anat
AU - Schuldiner, Shimon
PY - 1996
Y1 - 1996
N2 - Vesicular monoamine transporters (VMAT) catalyze transport of serotonin, dopamine, epinephrine, and norepinephrine into subcellular storage organelles in a variety of cells. Accumulation of the neurotransmitter depends on the proton electrochemical gradient (Δμ̄(H+)) across the organelle membrane and involves VMAT-mediated exchange of two lumenal protons with one cytoplasmic amine. Mutagenic analysis of the role of two conserved Asp residues located in transmembrane segments X and XI of rat VMAT type I reveals an important rob, of these two residues in catalysis. Replacement of Asp 431 with either Glu or Ser inhibits VMAT-mediated [3H]serotonin transport. The mutated proteins are unimpaired in ligand recognition as measured with the high affinity ligand [3H]reserpine or coupling to the proton electrochemical gradient as judged by its ability to accelerate [3H]reserpine binding. Therefore, the Asp residue is needed as such in this position and even a conservative replacement with Glu generates a protein that can catalyze only partial reactions but cannot complete the transport cycle. Replacement of Asp 404 with either Ser or Cys inhibits all VMAT- mediated reactions measured. However, replacement with Glu generated a protein that catalyzed [3H]serotonin transport with modified properties. Whereas the mutated protein binds [3H]reserpine to normal levels and the pH optimum of this reaction is only slightly affected, the optimum pH for transport activity shifted to the acid side and became very sharp; in addition the sensitivity to the inhibitor tetrabenazine increased significantly in this mutated protein. The results point to the need of a carboxyl moiety in position 404. A slight change in its relative location or in the environment around it has a significant effect on the pK of group(s) involved in steps after ligand recognition and coupling to the first H+.
AB - Vesicular monoamine transporters (VMAT) catalyze transport of serotonin, dopamine, epinephrine, and norepinephrine into subcellular storage organelles in a variety of cells. Accumulation of the neurotransmitter depends on the proton electrochemical gradient (Δμ̄(H+)) across the organelle membrane and involves VMAT-mediated exchange of two lumenal protons with one cytoplasmic amine. Mutagenic analysis of the role of two conserved Asp residues located in transmembrane segments X and XI of rat VMAT type I reveals an important rob, of these two residues in catalysis. Replacement of Asp 431 with either Glu or Ser inhibits VMAT-mediated [3H]serotonin transport. The mutated proteins are unimpaired in ligand recognition as measured with the high affinity ligand [3H]reserpine or coupling to the proton electrochemical gradient as judged by its ability to accelerate [3H]reserpine binding. Therefore, the Asp residue is needed as such in this position and even a conservative replacement with Glu generates a protein that can catalyze only partial reactions but cannot complete the transport cycle. Replacement of Asp 404 with either Ser or Cys inhibits all VMAT- mediated reactions measured. However, replacement with Glu generated a protein that catalyzed [3H]serotonin transport with modified properties. Whereas the mutated protein binds [3H]reserpine to normal levels and the pH optimum of this reaction is only slightly affected, the optimum pH for transport activity shifted to the acid side and became very sharp; in addition the sensitivity to the inhibitor tetrabenazine increased significantly in this mutated protein. The results point to the need of a carboxyl moiety in position 404. A slight change in its relative location or in the environment around it has a significant effect on the pK of group(s) involved in steps after ligand recognition and coupling to the first H+.
UR - http://www.scopus.com/inward/record.url?scp=17544366949&partnerID=8YFLogxK
U2 - 10.1074/jbc.271.22.13048
DO - 10.1074/jbc.271.22.13048
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 8662678
AN - SCOPUS:17544366949
SN - 0021-9258
VL - 271
SP - 13048
EP - 13054
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 22
ER -