TY - JOUR
T1 - Modulation of mitochondrial transition pore components by thyroid hormone
AU - Yehuda-Shnaidman, Einav
AU - Kalderon, Bella
AU - Bar-Tana, Jacob
PY - 2005/5
Y1 - 2005/5
N2 - Thyroid hormone (TH) modulates metabolic efficiency by controlling the coupling of mitochondrial oxidative phosphorylation. However, its uncoupling mode of action is still enigmatic. Treatment of Jurkat or GH3 cells with T3 is reported here to result in limited, Cyclosporin A-sensitive mitochondrial depolarization, conforming to low conductance gating of the mitochondrial transition pore (MTP). MTP protein components induced by T3 treatment were verified in T3-treated and hypothyroid rat liver as well as in Jurkat cells. T3 treatment resulted in increase in mitochondrial Bax and Bak together with decreased mitochondrial Bcl2. T3-induced mitochondrial depolarization was aborted by overexpression of Bcl2. In contrast to Bax-Bcl2 family proteins, some other MTP components were either not induced by T3 (e.g. voltage-dependent anion channel) or were induced, but were not involved in Cyclosporin A-sensitive MTP gating (e.g. Cyclophilin D and adenine nucleotide translocase-2) Hence, TH-induced mitochondrial uncoupling may be ascribed to low conductance MTP gating mediated by TH-induced increase in mitochondrial proapoptotic combined with a decrease in mitochondrial antiapoptotic proteins of the Bax-Bcl2 family.
AB - Thyroid hormone (TH) modulates metabolic efficiency by controlling the coupling of mitochondrial oxidative phosphorylation. However, its uncoupling mode of action is still enigmatic. Treatment of Jurkat or GH3 cells with T3 is reported here to result in limited, Cyclosporin A-sensitive mitochondrial depolarization, conforming to low conductance gating of the mitochondrial transition pore (MTP). MTP protein components induced by T3 treatment were verified in T3-treated and hypothyroid rat liver as well as in Jurkat cells. T3 treatment resulted in increase in mitochondrial Bax and Bak together with decreased mitochondrial Bcl2. T3-induced mitochondrial depolarization was aborted by overexpression of Bcl2. In contrast to Bax-Bcl2 family proteins, some other MTP components were either not induced by T3 (e.g. voltage-dependent anion channel) or were induced, but were not involved in Cyclosporin A-sensitive MTP gating (e.g. Cyclophilin D and adenine nucleotide translocase-2) Hence, TH-induced mitochondrial uncoupling may be ascribed to low conductance MTP gating mediated by TH-induced increase in mitochondrial proapoptotic combined with a decrease in mitochondrial antiapoptotic proteins of the Bax-Bcl2 family.
UR - http://www.scopus.com/inward/record.url?scp=17744371879&partnerID=8YFLogxK
U2 - 10.1210/en.2004-1161
DO - 10.1210/en.2004-1161
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 15691897
AN - SCOPUS:17744371879
SN - 0013-7227
VL - 146
SP - 2462
EP - 2472
JO - Endocrinology
JF - Endocrinology
IS - 5
ER -