Moduli, scalar charges, and the first law of black hole thermodynamics

Gary Gibbons, Renata Kallosh, Barak Kol

Research output: Contribution to journalArticlepeer-review

215 Scopus citations

Abstract

We show that under variation of moduli fields φ the first law of black hole thermodynamics becomes dM = κdA/8 π + Ω dJ + ψdq + χdp - Σ dφ, where Σ are the scalar charges. Also the Arnowitt-Desner-Misner mass is extremized at fixed A, J, (p, q) when the moduli fields take the fixed value φfix(p, q) which depend only on electric and magnetic charges. Thus the double-extreme black hole minimizes the mass for fixed conserved charges. We can now explain the fact that extreme black holes fix the moduli fields at the horizon φ = φfix (p, q): φfix is such that the scalar charges vanish: Σ(φfix, (p, q)) = 0.

Original languageAmerican English
Pages (from-to)4992-4995
Number of pages4
JournalPhysical Review Letters
Volume77
Issue number25
DOIs
StatePublished - 1996
Externally publishedYes

Fingerprint

Dive into the research topics of 'Moduli, scalar charges, and the first law of black hole thermodynamics'. Together they form a unique fingerprint.

Cite this