Molecular connectomics reveals a glucagon-like peptide 1-sensitive neural circuit for satiety

Addison N. Webster, Jordan J. Becker, Chia Li, Dana C. Schwalbe, Damien Kerspern, Eva O. Karolczak, Catherine B. Bundon, Roberta A. Onoharigho, Maisie Crook, Maira Jalil, Elizabeth N. Godschall, Emily G. Dame, Adam Dawer, Dylan Matthew Belmont-Rausch, Tune H. Pers, Andrew Lutas, Naomi Habib, Ali D. Güler, Michael J. Krashes*, John N. Campbell*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Liraglutide and other glucagon-like peptide 1 receptor agonists (GLP-1RAs) are effective weight loss drugs, but how they suppress appetite remains unclear. One potential mechanism is by activating neurons that inhibit the hunger-promoting Agouti-related peptide (AgRP) neurons of the arcuate hypothalamus (Arc). To identify these afferents, we developed a method combining rabies-based connectomics with single-nucleus transcriptomics. Here, we identify at least 21 afferent subtypes of AgRP neurons in the mouse mediobasal and paraventricular hypothalamus, which are predicted by our method. Among these are thyrotropin-releasing hormone (TRH)+ Arc (TRHArc) neurons, inhibitory neurons that express the Glp1r gene and are activated by the GLP-1RA liraglutide. Activating TRHArc neurons inhibits AgRP neurons and feeding, probably in an AgRP neuron-dependent manner. Silencing TRHArc neurons causes overeating and weight gain and attenuates liraglutide’s effect on body weight. Our results demonstrate a widely applicable method for molecular connectomics, comprehensively identify local inputs to AgRP neurons and reveal a circuit through which GLP-1RAs suppress appetite.

Original languageEnglish
Pages (from-to)2354-2373
Number of pages20
JournalNature Metabolism
Volume6
Issue number12
DOIs
StatePublished - Dec 2024

Bibliographical note

Publisher Copyright:
© The Author(s), under exclusive licence to Springer Nature Limited 2024.

Fingerprint

Dive into the research topics of 'Molecular connectomics reveals a glucagon-like peptide 1-sensitive neural circuit for satiety'. Together they form a unique fingerprint.

Cite this