TY - JOUR
T1 - Mouse dendritic cells pulsed with capsular polysaccharide induce resistance to lethal pneumococcal challenge
T2 - Roles of t cells and b cells
AU - Cohen, Noam
AU - Margalit, Raanan
AU - Pevsner-Fischer, Meirav
AU - Yona, Simon
AU - Jung, Steffen
AU - Eisenbach, Lea
AU - Cohen, Irun R.
PY - 2012/6/18
Y1 - 2012/6/18
N2 - Mice are exceedingly sensitive to intra-peritoneal (IP) challenge with some virulent pneumococci (LD50 = 1 bacterium). To investigate how peripheral contact with bacterial capsular polysaccharide (PS) antigen can induce resistance, we pulsed bone marrow dendritic cells (BMDC) of C57BL/6 mice with type 4 or type 3 PS, injected the BMDC intra-foot pad (IFP) and challenged the mice IP with supra-lethal doses of pneumococci. We examined the responses of T cells and B cells in the draining popliteal lymph node and measured the effects on the bacteria in the peritoneum and blood. We now report that: 1) The PS co-localized with MHC molecules on the BMDC surface; 2) PS-specific T and B cell proliferation and IFNγ secretion was detected in the draining popliteal lymph nodes on day 4; 3) Type-specific resistance to lethal IP challenge was manifested only after day 5; 4) Type-specific IgM and IgG antibodies were detected in the sera of only some of the mice, but B cells were essential for resistance; 5) Control mice vaccinated with a single injection of soluble PS did not develop a response in the draining popliteal lymph node and were not protected; 6) Mice injected with unpulsed BMDC also did not resist challenge: In unprotected mice, pneumococci entered the blood shortly after IP inoculation and multiplied exponentially in both blood and peritoneum killing the mice within 20 hours. Mice vaccinated with PS-pulsed BMDC trapped the bacteria in the peritoneum. The trapped bacteria proliferated exponentially IP, but died suddenly at 18-20 hours. Thus, a single injection of PS antigen associated with intact BMDC is a more effective vaccine than the soluble PS alone. This model system provides a platform for studying novel aspects of PS-targeted vaccination.
AB - Mice are exceedingly sensitive to intra-peritoneal (IP) challenge with some virulent pneumococci (LD50 = 1 bacterium). To investigate how peripheral contact with bacterial capsular polysaccharide (PS) antigen can induce resistance, we pulsed bone marrow dendritic cells (BMDC) of C57BL/6 mice with type 4 or type 3 PS, injected the BMDC intra-foot pad (IFP) and challenged the mice IP with supra-lethal doses of pneumococci. We examined the responses of T cells and B cells in the draining popliteal lymph node and measured the effects on the bacteria in the peritoneum and blood. We now report that: 1) The PS co-localized with MHC molecules on the BMDC surface; 2) PS-specific T and B cell proliferation and IFNγ secretion was detected in the draining popliteal lymph nodes on day 4; 3) Type-specific resistance to lethal IP challenge was manifested only after day 5; 4) Type-specific IgM and IgG antibodies were detected in the sera of only some of the mice, but B cells were essential for resistance; 5) Control mice vaccinated with a single injection of soluble PS did not develop a response in the draining popliteal lymph node and were not protected; 6) Mice injected with unpulsed BMDC also did not resist challenge: In unprotected mice, pneumococci entered the blood shortly after IP inoculation and multiplied exponentially in both blood and peritoneum killing the mice within 20 hours. Mice vaccinated with PS-pulsed BMDC trapped the bacteria in the peritoneum. The trapped bacteria proliferated exponentially IP, but died suddenly at 18-20 hours. Thus, a single injection of PS antigen associated with intact BMDC is a more effective vaccine than the soluble PS alone. This model system provides a platform for studying novel aspects of PS-targeted vaccination.
UR - http://www.scopus.com/inward/record.url?scp=84862489716&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0039193
DO - 10.1371/journal.pone.0039193
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 22723962
AN - SCOPUS:84862489716
SN - 1932-6203
VL - 7
JO - PLoS ONE
JF - PLoS ONE
IS - 6
M1 - e39193
ER -