TY - JOUR
T1 - Multi-group discontinuous asymptotic P1 approximation in radiative Marshak waves experiments
AU - Cohen, A. P.
AU - Heizler, S. I.
N1 - Publisher Copyright:
© 2021 Elsevier Ltd
PY - 2021/9
Y1 - 2021/9
N2 - We study the propagation of radiative heat (Marshak) waves, using modified P1-approximation equations. When the heat wave propagation is supersonic, i.e. propagates faster than the sound velocity, hydrodynamic motion is negligible, and the wave can be described by the radiative transfer Boltzmann equation, coupled with the material energy equation. However, the exact thermal radiative transfer problem is still difficult to solve and requires massive simulation capabilities. Hence, there still exists a need for adequate approximations that are comparatively easy to carry out. Classic approximations, such as the classic diffusion and classic P1, fail to describe the correct heat wave velocity, when the optical depth is not sufficiently high. Therefore, we use the recently developed discontinuous asymptotic P1 approximation, which is a time-dependent analogy for the adjustment of the discontinuous asymptotic diffusion for two different zones. This approximation was tested via several benchmarks, showing better results than other common approximations, and has also demonstrated a good agreement with a main Marshak wave experiment and its Monte-Carlo gray simulation. Here we derive energy expansion of the discontinuous asymptotic P1 approximation in slab geometry, and test it with numerous experimental results for propagating Marshak waves inside low density foams. The new approximation describes the heat wave propagation with good agreement. Furthermore, a comparison of the simulations to exact implicit Monte-Carlo slab-geometry multi-group simulations, in this wide range of experimental conditions, demonstrates the superiority of this approximation to others.
AB - We study the propagation of radiative heat (Marshak) waves, using modified P1-approximation equations. When the heat wave propagation is supersonic, i.e. propagates faster than the sound velocity, hydrodynamic motion is negligible, and the wave can be described by the radiative transfer Boltzmann equation, coupled with the material energy equation. However, the exact thermal radiative transfer problem is still difficult to solve and requires massive simulation capabilities. Hence, there still exists a need for adequate approximations that are comparatively easy to carry out. Classic approximations, such as the classic diffusion and classic P1, fail to describe the correct heat wave velocity, when the optical depth is not sufficiently high. Therefore, we use the recently developed discontinuous asymptotic P1 approximation, which is a time-dependent analogy for the adjustment of the discontinuous asymptotic diffusion for two different zones. This approximation was tested via several benchmarks, showing better results than other common approximations, and has also demonstrated a good agreement with a main Marshak wave experiment and its Monte-Carlo gray simulation. Here we derive energy expansion of the discontinuous asymptotic P1 approximation in slab geometry, and test it with numerous experimental results for propagating Marshak waves inside low density foams. The new approximation describes the heat wave propagation with good agreement. Furthermore, a comparison of the simulations to exact implicit Monte-Carlo slab-geometry multi-group simulations, in this wide range of experimental conditions, demonstrates the superiority of this approximation to others.
KW - Marshak waves
KW - P approximation
KW - Radiative transfer
UR - http://www.scopus.com/inward/record.url?scp=85111061206&partnerID=8YFLogxK
U2 - 10.1016/j.jqsrt.2021.107822
DO - 10.1016/j.jqsrt.2021.107822
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85111061206
SN - 0022-4073
VL - 272
JO - Journal of Quantitative Spectroscopy and Radiative Transfer
JF - Journal of Quantitative Spectroscopy and Radiative Transfer
M1 - 107822
ER -