Multi-player flow games

Shibashis Guha, Orna Kupferman, Gal Vardi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations


In the traditional maximum-flow problem, the goal is to transfer maximum flow in a network by directing, in each vertex in the network, incoming flow to outgoing edges. The problem corres ponds to settings in which a central authority has control on all vertices of the network Today's computing environment, however, involves systems with no central authority. In particular, in many applications of flow networks, the vertices correspond to decision- points controlled by different and selfish entities. For example, in communication networks, routers may belong to different compan ies, with different destination objectives. This suggests that the maximum-flow problem should be revisited, and examined from a game-theoretic perspective. We introduce and study multi-player flow games (MFGs, for short). Essentially, the vertices of an MFG are partitioned among the players, and a player that owns a vertex directs the flow that reaches it. Each player has a different target vertex, and the objective of each player is to maximize the flow that reaches her target vertex. We study the stability of MFGs and show that, unfortunately, an MFG need not have a Nash Equilibrium. Moreover, the Price of Anarchy and even the Price of Stability of MFGs are unbounded. That is, the reduction in the flow due to selfish behavior is unbounded. We study the problem of deciding whether a given MFG has a Nash Equilibrium and show that it is zç-comptete, as weU as the problem of finding optimal strategies for the players (that is, best-response moves), which we show to be NP-complete. We continue with some good news and consider a variant of MFGs in which flow may be swallowed. For example, when routers in a communication network may drop messages. We show that, surprisingly, while this model seems to incentivize selfish behavior, a Nash Equilibrium that achieves the maximum flow always exists, and can be found in polynomial time. Finally, we consider MEGs in which the strategies of the players may use non-integral flows, which we show to be stronger.

Original languageAmerican English
Title of host publication17th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2018
PublisherInternational Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS)
Number of pages9
ISBN (Print)9781510868083
StatePublished - 2018
Event17th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2018 - Stockholm, Sweden
Duration: 10 Jul 201815 Jul 2018

Publication series

NameProceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
ISSN (Print)1548-8403
ISSN (Electronic)1558-2914


Conference17th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2018

Bibliographical note

Publisher Copyright:
© 2018 International Foundation for Autonomous Agents and Multiagent Systems.


  • Game Theory for practical applications
  • Methodologies for agent-based systems
  • Noncoopera tive games: Theory & analysis
  • Noncooperative games computation


Dive into the research topics of 'Multi-player flow games'. Together they form a unique fingerprint.

Cite this