Multi-task active learning for linguistic annotations

Roi Reichart*, Katrin Tomanek, Udo Hahn, Ari Rappoport

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

69 Scopus citations

Abstract

We extend the classical single-task active learning (AL) approach. In the multi-task active learning (MTAL) paradigm, we select examples for several annotation tasks rather than for a single one as usually done in the context of AL. We introduce two MTAL metaprotocols, alternating selection and rank combination, and propose a method to implement them in practice. We experiment with a twotask annotation scenario that includes named entity and syntactic parse tree annotations on three different corpora. MTAL outperforms random selection and a stronger baseline, onesided example selection, in which one task is pursued using AL and the selected examples are provided also to the other task.

Original languageEnglish
Title of host publicationACL-08
Subtitle of host publicationHLT - 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference
Pages861-869
Number of pages9
StatePublished - 2008
Event46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, ACL-08: HLT - Columbus, OH, United States
Duration: 15 Jun 200820 Jun 2008

Publication series

NameACL-08: HLT - 46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference

Conference

Conference46th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, ACL-08: HLT
Country/TerritoryUnited States
CityColumbus, OH
Period15/06/0820/06/08

Fingerprint

Dive into the research topics of 'Multi-task active learning for linguistic annotations'. Together they form a unique fingerprint.

Cite this