Abstract
The enormous advances made over the last 50 years in materials science, microelectronics, and nanoelectronics, together with the acknowledgment that substrate-integrated planar multielectrode arrays (MEA) are limited to recording of extracellular field potentials (FPs) rather than the entire electrophysiological signaling repertoire of the brain, have prompted a number of laboratories to merge the advantages of planar MEA technologies (non-damaging and durable) with those of the classical sharp and patch electrodes for intracellular recordings. Unlike extracellular planar electrode-based MEAs, the new generation of three-dimensional (3D) vertical nanoelectrodes are designed to functionally penetrate the plasma membrane of cultured cells and operate in a similar manner to classical intracellular microelectrodes. Although only approximately 10 years has elapsed since the development of the first vertical 3D nanostructure-based MEAs, this technology has progressed to enable recordings of attenuated intracellular action potentials (APs) and synaptic potentials from individual neurons, cardiomyocytes, and striated myotubes. Furthermore, recently the scaling advantages of nanochip/microchip fabrication technologies enabled simultaneously intracellular recordings of APs from hundreds of cultured cardiomyocytes, thus heralding a new milestone in MEA technology. In this chapter we present the earliest and today’s cutting-edge achievements of this “young vertical nano-sensors MEA technology” at the single-cell and network levels, explain the biophysical principles and the various configurations used to form functional nanoelectrode/cell hybrids, and describe the quality and characteristic features of the recorded intracellular APs and subthreshold synaptic potentials by the vertical nanoelectrode-based MEA. Basic cell-biological mechanisms that curtail the length of time intracellular access by the nanoelectrodes are discussed, and approaches to overcome this problem are offered. Recent development of biotechnologies that use induced human pluripotent stem cells taken from healthy subjects and patients, and in vitro drug screening for the development of personalized medicine as well as basic brain research will benefit tremendously from the use of MEAs that record the entire brain electrophysiological signaling repertoire from individual cells within an operational network rather than only extracellular FPs.
Original language | English |
---|---|
Title of host publication | Advances in Neurobiology |
Publisher | Springer New York LLC |
Pages | 125-153 |
Number of pages | 29 |
DOIs | |
State | Published - 2019 |
Publication series
Name | Advances in Neurobiology |
---|---|
Volume | 22 |
ISSN (Print) | 2190-5215 |
ISSN (Electronic) | 2190-5223 |
Bibliographical note
Publisher Copyright:#x00A9; 2019, Springer Nature Switzerland AG.
Keywords
- Action potentials
- Cardiomyocytes
- Electroporation
- Intracellular recordings
- Membrane repair
- Mushroom-shaped microelectrodes
- Neurons
- Optoporation
- Seal resistance
- Striated myotubes
- Synaptic potentials
- Vertical nanoelectrodes