## Abstract

The mutual information between two jointly distributed random variables X and Y is a functional of the joint distribution PXY, which is sometimes difficult to handle or estimate. A coarser description of the statistical behavior of (X, Y) is given by the marginal distributions PX, PY and the adjacency relation induced by the joint distribution, where x and y are adjacent if P(x, y) > 0. We derive a lower bound on the mutual information in terms of these entities. The bound is obtained by viewing the channel from X to Y as a probability distribution on a set of possible actions, where an action determines the output for any possible input, and is independently drawn. We also provide an alternative proof based on convex optimization that yields a generally tighter bound. Finally, we derive an upper bound on the mutual information in terms of adjacency events between the action and the pair (X, Y), where in this case, an action a and a pair (x, y) are adjacent if y = a(x). As an example, we apply our bounds to the binary deletion channel and show that for the special case of an independent identically distributed input distribution and a range of deletion probabilities, our lower and upper bounds both outperform the best known bounds for the mutual information.

Original language | American English |
---|---|

Article number | 7567587 |

Pages (from-to) | 6068-6080 |

Number of pages | 13 |

Journal | IEEE Transactions on Information Theory |

Volume | 62 |

Issue number | 11 |

DOIs | |

State | Published - Nov 2016 |

Externally published | Yes |

### Bibliographical note

Publisher Copyright:© 1963-2012 IEEE.

## Keywords

- Mutual information bounds
- alternating minimization
- deletion channel
- functional representation