Abstract
Consider N cooperative but non-communicating players where each plays one out of M arms for T turns. Players have different utilities for each arm, representable as an N × M matrix. These utilities are unknown to the players. In each turn players select an arm and receive a noisy observation of their utility for it. However, if any other players selected the same arm that turn, all colliding players will receive zero utility due to the conflict. No other communication or coordination between the players is possible. Our goal is to design a distributed algorithm that learns the matching between players and arms that achieves max-min fairness while minimizing the regret. We present an algorithm and prove that it is regret optimal up to a log log T factor. This is the first max-min fairness multi-player bandit algorithm with (near) order optimal regret.
Original language | English |
---|---|
Title of host publication | 37th International Conference on Machine Learning, ICML 2020 |
Editors | Hal Daume, Aarti Singh |
Publisher | International Machine Learning Society (IMLS) |
Pages | 907-917 |
Number of pages | 11 |
ISBN (Electronic) | 9781713821120 |
State | Published - 2020 |
Externally published | Yes |
Event | 37th International Conference on Machine Learning, ICML 2020 - Virtual, Online Duration: 13 Jul 2020 → 18 Jul 2020 |
Publication series
Name | 37th International Conference on Machine Learning, ICML 2020 |
---|---|
Volume | PartF168147-2 |
Conference
Conference | 37th International Conference on Machine Learning, ICML 2020 |
---|---|
City | Virtual, Online |
Period | 13/07/20 → 18/07/20 |
Bibliographical note
Publisher Copyright:© 2020 37th International Conference on Machine Learning, ICML 2020. All rights reserved.