Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways

Richa Gupta, Daniel Barkan, Gil Redelman-Sidi, Stewart Shuman, Michael S. Glickman*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

84 Scopus citations


Bacterial pathogens rely on their DNA repair pathways to resist genomic damage inflicted by the host. DNA double-strand breaks (DSBs) are especially threatening to bacterial viability. DSB repair by homologous recombination (HR) requires nucleases that resect DSB ends and a strand exchange protein that facilitates homology search. RecBCD and RecA perform these functions in Escherichia coli and constitute the major pathway of error-free DSB repair. Mycobacteria, including the human pathogen M. tuberculosis, elaborate an additional error-prone pathway of DSB repair via non-homologous end-joining (NHEJ) catalysed by Ku and DNA ligase D (LigD). Little is known about the relative contributions of HR and NHEJ to mycobacterial chromosome repair, the factors that dictate pathway choice, or the existence of additional DSB repair pathways. Here we demonstrate that Mycobacterium smegmatis has three DSB repair pathway options: HR, NHEJ and a novel mechanism of single-strand annealing (SSA). Inactivation of NHEJ or SSA is compensated by elevated HR. We find that mycobacterial RecBCD does not participate in HR or confer resistance to ionizing radiation (IR), but is required for the RecA-independent SSA pathway. In contrast, the mycobacterial helicase-nuclease AdnAB participates in the RecA-dependent HR pathway, and is a major determinant of resistance to IR and oxidative DNA damage. These findings reveal distinctive features of mycobacterial DSB repair, most notably the dedication of the RecBCD and AdnAB helicase-nuclease machines to distinct repair pathways.

Original languageAmerican English
Pages (from-to)316-330
Number of pages15
JournalMolecular Microbiology
Issue number2
StatePublished - Jan 2011
Externally publishedYes


Dive into the research topics of 'Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways'. Together they form a unique fingerprint.

Cite this