TY - JOUR
T1 - N-Acetylcysteine, N-Acetylcysteine Amide, and Thioredoxin Mimetic Peptides Regenerate Mercaptoalbumin and Exhibit Antioxidant Activity
AU - Eligini, Sonia
AU - Munno, Marco
AU - Modafferi, Gloria
AU - Atlas, Daphne
AU - Banfi, Cristina
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/3
Y1 - 2024/3
N2 - Albumin (HSA) is the most abundant circulating protein and plays a pivotal role in maintaining the redox state of the plasma. Three HSA proteoforms have been identified based on the redox state of cysteine 34. These proteoforms comprise of the reduced state (HSA-SH) referred to as mercaptoalbumin, non-mercaptoalbumin-1, containing a disulfide with small thiols such as cysteine (HSA-Cys), and non-mercaptoalbumin-2, representing the higher oxidized proteoform. Several clinical studies have shown a relationship between an individual’s serum HSA redox status and the severity of diseases such as heart failure, diabetes mellitus, and liver disease. Furthermore, when HSA undergoes oxidation, it can worsen certain health conditions and contribute to their advancement. This study aimed to evaluate the ability of the redox compounds AD4/NACA and the thioredoxin mimetic (TXM) peptides TXM-CB3, TXM-CB13, and TXM-CB30 to regenerate HSA-SH and to enhance its redox activity. The HSA proteoforms were quantified by LC-MS, and the antioxidant activity was determined using dichlorofluorescin. Each of the compounds exhibited a significant increase in HSA-SH and a reduction in HSA-Cys levels. The increase in HSA-SH was associated with a recovery of its antioxidant activity. In this work, we unveil a novel mechanistic facet of the antioxidant activity of AD4/NACA and TXM peptides. These results suggest an additional therapeutic approach for addressing oxidative stress-related conditions.
AB - Albumin (HSA) is the most abundant circulating protein and plays a pivotal role in maintaining the redox state of the plasma. Three HSA proteoforms have been identified based on the redox state of cysteine 34. These proteoforms comprise of the reduced state (HSA-SH) referred to as mercaptoalbumin, non-mercaptoalbumin-1, containing a disulfide with small thiols such as cysteine (HSA-Cys), and non-mercaptoalbumin-2, representing the higher oxidized proteoform. Several clinical studies have shown a relationship between an individual’s serum HSA redox status and the severity of diseases such as heart failure, diabetes mellitus, and liver disease. Furthermore, when HSA undergoes oxidation, it can worsen certain health conditions and contribute to their advancement. This study aimed to evaluate the ability of the redox compounds AD4/NACA and the thioredoxin mimetic (TXM) peptides TXM-CB3, TXM-CB13, and TXM-CB30 to regenerate HSA-SH and to enhance its redox activity. The HSA proteoforms were quantified by LC-MS, and the antioxidant activity was determined using dichlorofluorescin. Each of the compounds exhibited a significant increase in HSA-SH and a reduction in HSA-Cys levels. The increase in HSA-SH was associated with a recovery of its antioxidant activity. In this work, we unveil a novel mechanistic facet of the antioxidant activity of AD4/NACA and TXM peptides. These results suggest an additional therapeutic approach for addressing oxidative stress-related conditions.
KW - albumin
KW - antioxidant activity
KW - N-acetylcysteine
KW - N-acetylcysteine amide
KW - thioredoxin-mimetic compounds
UR - http://www.scopus.com/inward/record.url?scp=85188752907&partnerID=8YFLogxK
U2 - 10.3390/antiox13030351
DO - 10.3390/antiox13030351
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 38539884
AN - SCOPUS:85188752907
SN - 2076-3921
VL - 13
JO - Antioxidants
JF - Antioxidants
IS - 3
M1 - 351
ER -