NAM: Non-adversarial unsupervised domain mapping

Yedid Hoshen*, Lior Wolf

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Several methods were recently proposed for the task of translating images between domains without prior knowledge in the form of correspondences. The existing methods apply adversarial learning to ensure that the distribution of the mapped source domain is indistinguishable from the target domain, which suffers from known stability issues. In addition, most methods rely heavily on “cycle” relationships between the domains, which enforce a one-to-one mapping. In this work, we introduce an alternative method: Non-Adversarial Mapping (NAM), which separates the task of target domain generative modeling from the cross-domain mapping task. NAM relies on a pre-trained generative model of the target domain, and aligns each source image with an image synthesized from the target domain, while jointly optimizing the domain mapping function. It has several key advantages: higher quality and resolution image translations, simpler and more stable training and reusable target models. Extensive experiments are presented validating the advantages of our method.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2018 - 15th European Conference, 2018, Proceedings
EditorsVittorio Ferrari, Cristian Sminchisescu, Yair Weiss, Martial Hebert
PublisherSpringer Verlag
Pages455-470
Number of pages16
ISBN (Print)9783030012632
DOIs
StatePublished - 2018
Externally publishedYes
Event15th European Conference on Computer Vision, ECCV 2018 - Munich, Germany
Duration: 8 Sep 201814 Sep 2018

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11218 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference15th European Conference on Computer Vision, ECCV 2018
Country/TerritoryGermany
CityMunich
Period8/09/1814/09/18

Bibliographical note

Publisher Copyright:
© 2018, Springer Nature Switzerland AG.

Fingerprint

Dive into the research topics of 'NAM: Non-adversarial unsupervised domain mapping'. Together they form a unique fingerprint.

Cite this