Abstract
The electric field amplitude produced by a femtosecond laser provides a powerful method to swiftly accelerate electrons. To efficiently couple to free electrons, the laser-electron interaction must be phase-matched. Considering the regime of linear optics, this has been shown to be possible using the inverse Smith-Purcell effect, where a laser generates intense nearfields in a nanophotonic structure designed to match the electron's velocity [1,2]. Where conventional radiofrequency cavities are typically damage-limited to 100 MV/m and usually operate at 25 MV/m electric fields, dielectric laser accelerator structures have been shown to withstand almost 10 GV/m fields [3] - two orders of magnitude higher. This enables the electron accelerator on a chip [4], because its length can be equally reduced by two orders of magnitude: from meter-size to centimeter-size.
Original language | English |
---|---|
Title of host publication | 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9798350345995 |
DOIs | |
State | Published - 2023 |
Externally published | Yes |
Event | 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023 - Munich, Germany Duration: 26 Jun 2023 → 30 Jun 2023 |
Publication series
Name | 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023 |
---|
Conference
Conference | 2023 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2023 |
---|---|
Country/Territory | Germany |
City | Munich |
Period | 26/06/23 → 30/06/23 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.