TY - JOUR
T1 - Nanosensor-based monitoring of autophagy-associated lysosomal acidification in vivo
AU - Kim, Mijin
AU - Chen, Chen
AU - Yaari, Zvi
AU - Frederiksen, Rune
AU - Randall, Ewelina
AU - Wollowitz, Jaina
AU - Cupo, Christian
AU - Wu, Xiaojian
AU - Shah, Janki
AU - Worroll, Daniel
AU - Lagenbacher, Rachel E.
AU - Goerzen, Dana
AU - Li, Yue Ming
AU - An, Heeseon
AU - Wang, Yu Huang
AU - Heller, Daniel A.
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive licence to Springer Nature America, Inc.
PY - 2023/12
Y1 - 2023/12
N2 - Autophagy is a cellular process with important functions that drive neurodegenerative diseases and cancers. Lysosomal hyperacidification is a hallmark of autophagy. Lysosomal pH is currently measured by fluorescent probes in cell culture, but existing methods do not allow for quantitative, transient or in vivo measurements. In the present study, we developed near-infrared optical nanosensors using organic color centers (covalent sp3 defects on carbon nanotubes) to measure autophagy-mediated endolysosomal hyperacidification in live cells and in vivo. The nanosensors localize to the lysosomes, where the emission band shifts in response to local pH, enabling spatial, dynamic and quantitative mapping of subtle changes in lysosomal pH. Using the sensor, we observed cellular and intratumoral hyperacidification on administration of mTORC1 and V-ATPase modulators, revealing that lysosomal acidification mirrors the dynamics of S6K dephosphorylation and LC3B lipidation while diverging from p62 degradation. This sensor enables the transient and in vivo monitoring of the autophagy–lysosomal pathway. [Figure not available: see fulltext.].
AB - Autophagy is a cellular process with important functions that drive neurodegenerative diseases and cancers. Lysosomal hyperacidification is a hallmark of autophagy. Lysosomal pH is currently measured by fluorescent probes in cell culture, but existing methods do not allow for quantitative, transient or in vivo measurements. In the present study, we developed near-infrared optical nanosensors using organic color centers (covalent sp3 defects on carbon nanotubes) to measure autophagy-mediated endolysosomal hyperacidification in live cells and in vivo. The nanosensors localize to the lysosomes, where the emission band shifts in response to local pH, enabling spatial, dynamic and quantitative mapping of subtle changes in lysosomal pH. Using the sensor, we observed cellular and intratumoral hyperacidification on administration of mTORC1 and V-ATPase modulators, revealing that lysosomal acidification mirrors the dynamics of S6K dephosphorylation and LC3B lipidation while diverging from p62 degradation. This sensor enables the transient and in vivo monitoring of the autophagy–lysosomal pathway. [Figure not available: see fulltext.].
UR - http://www.scopus.com/inward/record.url?scp=85161907340&partnerID=8YFLogxK
U2 - 10.1038/s41589-023-01364-9
DO - 10.1038/s41589-023-01364-9
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 37322156
AN - SCOPUS:85161907340
SN - 1552-4450
VL - 19
SP - 1448
EP - 1457
JO - Nature Chemical Biology
JF - Nature Chemical Biology
IS - 12
ER -