Abstract
A challenging open question in deep learning is how to handle tabular data. Unlike domains such as image and natural language processing, where deep architectures prevail, there is still no widely accepted neural architecture that dominates tabular data. As a step toward bridging this gap, we present Net-DNF a novel generic architecture whose inductive bias elicits models whose structure corresponds to logical Boolean formulas in disjunctive normal form (DNF) over affine soft-threshold decision terms. Net-DNFs also promote localized decisions that are taken over small subsets of the features. We present extensive experiments showing that Net-DNFs significantly and consistently outperform fully connected networks over tabular data. With relatively few hyperparameters, Net-DNFs open the door to practical end-to-end handling of tabular data using neural networks. We present ablation studies, which justify the design choices of Net-DNF including the inductive bias elements, namely, Boolean formulation, locality, and feature selection.
Original language | English |
---|---|
State | Published - 2021 |
Event | 9th International Conference on Learning Representations, ICLR 2021 - Virtual, Online Duration: 3 May 2021 → 7 May 2021 |
Conference
Conference | 9th International Conference on Learning Representations, ICLR 2021 |
---|---|
City | Virtual, Online |
Period | 3/05/21 → 7/05/21 |
Bibliographical note
Publisher Copyright:© 2021 ICLR 2021 - 9th International Conference on Learning Representations. All rights reserved.