Abstract
We suggest that part of the infalling material during the core collapse of a massive star goes into orbit around the compact core to form a hot, dense, centrifugally supported accretion disk whose evolution is strongly influenced by neutrino interactions. Under a wide range of conditions, this neutrino-dominated accretion flow will be advection dominated and will develop a substantial outflowing wind. We estimate the energy carried out in the wind and find that it exceeds 1050 ergs for a wide range of parameters and even exceeds 1051 ergs for reasonable parameter choices. We propose that the wind energy will revive a stalled shock and will help produce a successful supernova explosion. We discuss the role of the disk wind in both prompt and delayed explosions. While both scenarios are feasible, we suggest that a delayed explosion is more likely and perhaps even unavoidable. Finally, we suggest that the disk wind may be a natural site for r-process nucleosynthesis.
Original language | English |
---|---|
Pages (from-to) | 341-361 |
Number of pages | 21 |
Journal | Astrophysical Journal |
Volume | 629 |
Issue number | 1 I |
DOIs | |
State | Published - 10 Aug 2005 |
Keywords
- Accretion, accretion disks
- Black hole physics
- Neutrinos
- Supernovae: general