Abstract
Superconducting nanowires, a mature technology originally developed for quantum sensing, can be used as a target and sensor with which to search for dark matter interactions with electrons. Here we report on a 180-hour measurement of a tungsten silicide superconducting nanowire device with a mass of 4.3 nanograms. We use this to place new constraints on dark matter-electron interactions, including the strongest terrestrial constraints to date on sub-MeV (sub-eV) dark matter that interacts with electrons via scattering (absorption) processes.
Original language | English |
---|---|
Article number | 112005 |
Journal | Physical Review D |
Volume | 106 |
Issue number | 11 |
DOIs | |
State | Published - 1 Dec 2022 |
Bibliographical note
Publisher Copyright:© 2022 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP3.