No evidence for globally coherent warm and cold periods over the preindustrial Common Era

Raphael Neukom*, Nathan Steiger, Juan José Gómez-Navarro, Jianghao Wang, Johannes P. Werner

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

229 Scopus citations

Abstract

Earth’s climate history is often understood by breaking it down into constituent climatic epochs1. Over the Common Era (the past 2,000 years) these epochs, such as the Little Ice Age2–4, have been characterized as having occurred at the same time across extensive spatial scales5. Although the rapid global warming seen in observations over the past 150 years does show nearly global coherence6, the spatiotemporal coherence of climate epochs earlier in the Common Era has yet to be robustly tested. Here we use global palaeoclimate reconstructions for the past 2,000 years, and find no evidence for preindustrial globally coherent cold and warm epochs. In particular, we find that the coldest epoch of the last millennium—the putative Little Ice Age—is most likely to have experienced the coldest temperatures during the fifteenth century in the central and eastern Pacific Ocean, during the seventeenth century in northwestern Europe and southeastern North America, and during the mid-nineteenth century over most of the remaining regions. Furthermore, the spatial coherence that does exist over the preindustrial Common Era is consistent with the spatial coherence of stochastic climatic variability. This lack of spatiotemporal coherence indicates that preindustrial forcing was not sufficient to produce globally synchronous extreme temperatures at multidecadal and centennial timescales. By contrast, we find that the warmest period of the past two millennia occurred during the twentieth century for more than 98 per cent of the globe. This provides strong evidence that anthropogenic global warming is not only unparalleled in terms of absolute temperatures5, but also unprecedented in spatial consistency within the context of the past 2,000 years.

Original languageAmerican English
Pages (from-to)550-554
Number of pages5
JournalNature
Volume571
Issue number7766
DOIs
StatePublished - 25 Jul 2019
Externally publishedYes

Bibliographical note

Funding Information:
Acknowledgements This is a contribution to the PAGES 2k initiative. PAGES 2k network members are acknowledged for providing input proxy data. J. Emile-Geay provided the graphEM-infilled temperature target grid. Some calculations were run on the Ubelix cluster of the University of Bern. R.N. is supported by the Swiss National Science Foundation (NSF; grant PZ00P2_154802). N.S. was supported by the NOAA Climate and Global Change Postdoctoral Fellowship Program, administered by the University Corporation for Atmospheric Research (UCAR)’s Visiting Scientist Programs, and by US NSF grants OISE-1743738 and AGS-1805490. This is the Lamont-Doherty Earth Observatory (LDEO) contribution number 8324. J.J.G.-N. acknowledges the Juan de la Cierva-Incorporación program (grant IJCI-2015-26914), as well as the Autonomous Community of the Region de Murcia for funding provided through the Seneca Foundation (projects 20022/SF/16 and 20640/JLI/18).

Publisher Copyright:
© 2019, The Author(s), under exclusive licence to Springer Nature Limited.

Fingerprint

Dive into the research topics of 'No evidence for globally coherent warm and cold periods over the preindustrial Common Era'. Together they form a unique fingerprint.

Cite this