Non-covalently embedded oxytocin in alkanethiol monolayer as Zn2+ selective biosensor

Jessica Attia, Sivan Nir, Evgeniy Mervinetsky, Dora Balogh, Agata Gitlin-Domagalska, Israel Alshanski, Meital Reches*, Mattan Hurevich*, Shlomo Yitzchaik*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Peptides are commonly used as biosensors for analytes such as metal ions as they have natural binding preferences. In our previous peptide-based impedimetric metal ion biosensors, a monolayer of the peptide was anchored covalently to the electrode. Binding of metal ions resulted in a conformational change of the oxytocin peptide in the monolayer, which was measured using electrochemical impedance spectroscopy. Here, we demonstrate that sensing can be achieved also when the oxytocin is non-covalently integrated into an alkanethiol host monolayer. We show that ion-binding cause morphological changes to the dense host layer, which translates into enhanced impedimetric signals compared to direct covalent assembly strategies. This biosensor proved selective and sensitive for Zn2+ ions in the range of nano- to micro-molar concentrations. This strategy offers an approach to utilize peptide flexibility in monitoring their response to the environment while embedded in a hydrophobic monolayer.

Original languageAmerican English
Article number7051
JournalScientific Reports
Volume11
Issue number1
DOIs
StatePublished - Dec 2021

Bibliographical note

Publisher Copyright:
© 2021, The Author(s).

Fingerprint

Dive into the research topics of 'Non-covalently embedded oxytocin in alkanethiol monolayer as Zn2+ selective biosensor'. Together they form a unique fingerprint.

Cite this