Non-invasive detection of human cardiomyocyte death using methylation patterns of circulating DNA

Hai Zemmour, David Planer, Judith Magenheim, Joshua Moss, Daniel Neiman, Dan Gilon, Amit Korach, Benjamin Glaser, Ruth Shemer, Giora Landesberg*, Yuval Dor

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

123 Scopus citations

Abstract

Detection of cardiomyocyte death is crucial for the diagnosis and treatment of heart disease. Here we use comparative methylome analysis to identify genomic loci that are unmethylated specifically in cardiomyocytes, and develop these as biomarkers to quantify cardiomyocyte DNA in circulating cell-free DNA (cfDNA) derived from dying cells. Plasma of healthy individuals contains essentially no cardiomyocyte cfDNA, consistent with minimal cardiac turnover. Patients with acute ST-elevation myocardial infarction show a robust cardiac cfDNA signal that correlates with levels of troponin and creatine phosphokinase (CPK), including the expected elevation-decay dynamics following coronary angioplasty. Patients with sepsis have high cardiac cfDNA concentrations that strongly predict mortality, suggesting a major role of cardiomyocyte death in mortality from sepsis. A cfDNA biomarker for cardiomyocyte death may find utility in diagnosis and monitoring of cardiac pathologies and in the study of normal human cardiac physiology and development.

Original languageAmerican English
Article number1443
JournalNature Communications
Volume9
Issue number1
DOIs
StatePublished - 1 Dec 2018

Bibliographical note

Publisher Copyright:
© 2018 The Author(s).

Fingerprint

Dive into the research topics of 'Non-invasive detection of human cardiomyocyte death using methylation patterns of circulating DNA'. Together they form a unique fingerprint.

Cite this