Abstract
Optical imaging through and inside complex samples is a difficult challenge with important applications in many fields. The fundamental problem is that inhomogeneous samples such as biological tissue randomly scatter and diffuse light, preventing the formation of diffraction-limited images. Despite many recent advances, no current method can perform non-invasive imaging in real-time using diffused light. Here, we show that, owing to the a memory-effectâ €™ for speckle correlations, a single high-resolution image of the scattered light, captured with a standard camera, encodes sufficient information to image through visually opaque layers and around corners with diffraction-limited resolution. We experimentally demonstrate single-shot imaging through scattering media and around corners using spatially incoherent light and various samples, from white paint to dynamic biological samples. Our single-shot lensless technique is simple, does not require wavefront-shaping nor time-gated or interferometric detection, and is realized here using a camera-phone. It has the potential to enable imaging in currently inaccessible scenarios.
Original language | American English |
---|---|
Pages (from-to) | 784-790 |
Number of pages | 7 |
Journal | Nature Photonics |
Volume | 8 |
Issue number | 10 |
DOIs | |
State | Published - 1 Jan 2014 |
Externally published | Yes |
Bibliographical note
Funding Information:The authors thank D. Martina and A. Liutkus for help with the GPU implementation of the algorithm, P. Ducellier for the Nokia Lumia 1020 camera-phone, J. Bertolotti for discussions and D. Andreoli for the spectral decorrelation measurements. This work was funded by the European Research Council (grant no. 278025). O.K. was supported by the Marie Curie Intra-European fellowship for career development (IEF) and a Rothschild fellowship.
Publisher Copyright:
© 2014 Macmillan Publishers Limited. All rights reserved.