Non-malleable Vector Commitments via Local Equivocability

Lior Rotem*, Gil Segev

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Vector commitments (VCs), enabling to commit to a vector and locally reveal any of its entries, play a key role in a variety of both classic and recently-evolving applications. However, security notions for VCs have so far focused on passive attacks, and non-malleability notions considering active attacks have not been explored. Moreover, existing frameworks that may enable to capture the non-malleability of VCs seem either too weak (non-malleable non-interactive commitments that do not account for the security implications of local openings) or too strong (non-malleable zero-knowledge sets that support both membership and non-membership proofs). We put forward a rigorous framework capturing the non-malleability of VCs, striking a careful balance between the existing weaker and stronger frameworks: We strengthen the framework of non-malleable non-interactive commitments by considering attackers that may be exposed to local openings, and we relax the framework of non-malleable zero-knowledge sets by focusing on membership proofs. In addition, we strengthen both frameworks by supporting (inherently-private) updates to entries of committed vectors, and discuss the benefits of non-malleable VCs in the context of both UTXO-based and account-based stateless blockchains, and in the context of simultaneous multi-round auctions (that have been adopted by the US Federal Communications Commission as the standard auction format for selling spectrum ranges). Within our framework we present a direct approach for constructing non-malleable VCs whose efficiency essentially matches that of the existing standard VCs. Specifically, we show that any VC can be transformed into a non-malleable one, relying on a new primitive that we put forth. Our new primitive, locally-equivocable commitments with all-but-one binding, is evidently both conceptually and technically simpler compared to multi-trapdoor mercurial trapdoor commitments (the main building block underlying existing non-malleable zero-knowledge sets), and admits more efficient instantiations based on the same number-theoretic assumptions.

Original languageEnglish
Title of host publicationTheory of Cryptography - 19th International Conference, TCC 2021, Proceedings
EditorsKobbi Nissim, Brent Waters, Brent Waters
PublisherSpringer Science and Business Media Deutschland GmbH
Pages415-446
Number of pages32
ISBN (Print)9783030904555
DOIs
StatePublished - 2021
Event19th International Conference on Theory of Cryptography, TCC 2021 - Raleigh, United States
Duration: 8 Nov 202111 Nov 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13044 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference19th International Conference on Theory of Cryptography, TCC 2021
Country/TerritoryUnited States
CityRaleigh
Period8/11/2111/11/21

Bibliographical note

Publisher Copyright:
© 2021, International Association for Cryptologic Research.

Fingerprint

Dive into the research topics of 'Non-malleable Vector Commitments via Local Equivocability'. Together they form a unique fingerprint.

Cite this