Nonparanormal belief propagation (NPNBP)

Gal Elidan, Cobi Cario

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

The empirical success of the belief propagation approximate inference algorithm has inspired numerous theoretical and algorithmic advances. Yet, for continuous non-Gaussian domains performing belief propagation remains a challenging task: recent innovations such as nonparametric or kernel belief propagation, while useful, come with a substantial computational cost and offer little theoretical guarantees, even for tree structured models. In this work we present Nonparanormal BP for performing efficient inference on distributions parameterized by a Gaussian copulas network and any univariate marginals. For tree structured networks, our approach is guaranteed to be exact for this powerful class of non-Gaussian models. Importantly, the method is as efficient as standard Gaussian BP, and its convergence properties do not depend on the complexity of the univariate marginals, even when a nonparametric representation is used.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 25
Subtitle of host publication26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Pages899-907
Number of pages9
StatePublished - 2012
Event26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012 - Lake Tahoe, NV, United States
Duration: 3 Dec 20126 Dec 2012

Publication series

NameAdvances in Neural Information Processing Systems
Volume2
ISSN (Print)1049-5258

Conference

Conference26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Country/TerritoryUnited States
CityLake Tahoe, NV
Period3/12/126/12/12

Fingerprint

Dive into the research topics of 'Nonparanormal belief propagation (NPNBP)'. Together they form a unique fingerprint.

Cite this