TY - JOUR
T1 - Nonresonant Raman Effects on Femtosecond Pump-Probe with Chirped White Light
T2 - Challenges and Opportunities
AU - Gdor, Itay
AU - Ghosh, Tufan
AU - Lioubashevski, Oleg
AU - Ruhman, Sanford
N1 - Publisher Copyright:
© 2017 American Chemical Society.
PY - 2017/4/20
Y1 - 2017/4/20
N2 - Impulsive Raman excitation in neat organic liquids far from resonance is followed using chirped broad-band supercontinuum probe pulses. Spectral modulations due to impulsively induced coherent vibrations vary in intensity 10-fold as a function of the probe's linear chirp. Simulations clarify why the vibrational signature is maximized for a group delay dispersion (GDD) in reduced units of νvib-2 = 0.5 while a probe GDD of twice that quenches the same spectral modulations. Accordingly, recent claims that chirped white-light probe pulses provide equivalent information on material response to their compressed analogues must be taken with caution. In particular, interactions that induce spectral shifts in the probe depend crucially on the arrival chronology of the continuum colors. On one hand, this presents limitations to application of chirped continuum radiation as-is in pump-probe experiments. It also presents the opportunity for using this dependence to control the relative amplitude of nonresonant interactions in pump-probe signals such as that of solvent vibrations.
AB - Impulsive Raman excitation in neat organic liquids far from resonance is followed using chirped broad-band supercontinuum probe pulses. Spectral modulations due to impulsively induced coherent vibrations vary in intensity 10-fold as a function of the probe's linear chirp. Simulations clarify why the vibrational signature is maximized for a group delay dispersion (GDD) in reduced units of νvib-2 = 0.5 while a probe GDD of twice that quenches the same spectral modulations. Accordingly, recent claims that chirped white-light probe pulses provide equivalent information on material response to their compressed analogues must be taken with caution. In particular, interactions that induce spectral shifts in the probe depend crucially on the arrival chronology of the continuum colors. On one hand, this presents limitations to application of chirped continuum radiation as-is in pump-probe experiments. It also presents the opportunity for using this dependence to control the relative amplitude of nonresonant interactions in pump-probe signals such as that of solvent vibrations.
UR - http://www.scopus.com/inward/record.url?scp=85018487359&partnerID=8YFLogxK
U2 - 10.1021/acs.jpclett.7b00559
DO - 10.1021/acs.jpclett.7b00559
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.systematicreview???
C2 - 28388046
AN - SCOPUS:85018487359
SN - 1948-7185
VL - 8
SP - 1920
EP - 1924
JO - Journal of Physical Chemistry Letters
JF - Journal of Physical Chemistry Letters
IS - 8
ER -