Abstract
The conjugation of catalytic sites to sequence-specific, ligand-binding nucleic acid aptamers yields functional catalytic ensembles mimicking the catalytic/binding properties of native enzymes. These catalyst-aptamer conjugates termed 'nucleoapzymes' reveal structural diversity, and thus, vary in their catalytic activity, due to the different modes of conjugation of the catalytic units to the nucleic acid aptamer scaffold. The concept of nucleoapzymes is introduced with the assembly of a set of catalysts consisting of the hemin/G-quadruplex DNAzyme (hGQ) conjugated to the dopamine aptamer. The nucleoapzymes catalyze the oxidation of dopamine by H2O2 to yield aminochrome. The catalytic processes are controlled by the structures of the nucleoapzymes, and chiroselective oxidation of L-DOPA and D-DOPA by the nucleoapzymes is demonstrated. In addition, the conjugation of a Fe(III)-terpyridine complex to the dopamine aptamer and of a bis-Zn(II)-pyridyl-salen-type complex to the ATP-aptamer yields hybrid nucleoapzymes (conjugates where the catalytic site is not a biomolecule) that catalyze the oxidation of dopamine to aminochrome by H2O2 and the hydrolysis of ATP to ADP, respectively. Variable, structure-controlled catalytic activities of the different nucleoapzymes are demonstrated. Molecular dynamic simulations are applied to rationalize the structure-catalytic function relationships of the different nucleoapzymes. The challenges and perspectives of the research field are discussed.
Original language | English |
---|---|
Pages (from-to) | 493-499 |
Number of pages | 7 |
Journal | Emerging topics in life sciences |
Volume | 3 |
Issue number | 5 |
DOIs | |
State | Published - Nov 2019 |
Bibliographical note
Publisher Copyright:© 2019 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology