NV center based nano-NMR enhanced by deep learning

Nati Aharon*, Amit Rotem, Liam P. McGuinness, Fedor Jelezko, Alex Retzker, Zohar Ringel

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

The growing field of nano nuclear magnetic resonance (nano-NMR) seeks to estimate spectra or discriminate between spectra of minuscule amounts of complex molecules. While this field holds great promise, nano-NMR experiments suffer from detrimental inherent noise. This strong noise masks to the weak signal and results in a very low signal-to-noise ratio. Moreover, the noise model is usually complex and unknown, which renders the data processing of the measurement results very complicated. Hence, spectra discrimination is hard to achieve and in particular, it is difficult to reach the optimal discrimination. In this work we present strong indications that this difficulty can be overcome by deep learning (DL) algorithms. The DL algorithms can mitigate the adversarial effects of the noise efficiently by effectively learning the noise model. We show that in the case of frequency discrimination DL algorithms reach the optimal discrimination without having any pre-knowledge of the physical model. Moreover, the DL discrimination scheme outperform Bayesian methods when verified on noisy experimental data obtained by a single Nitrogen-Vacancy (NV) center. In the case of frequency resolution we show that this approach outperforms Bayesian methods even when the latter have full pre-knowledge of the noise model and the former has none. These DL algorithms also emerge as much more efficient in terms of computational resources and run times. Since in many real-world scenarios the noise is complex and difficult to model, we argue that DL is likely to become a dominant tool in the field.

Original languageAmerican English
Article number17802
JournalScientific Reports
Volume9
Issue number1
DOIs
StatePublished - 1 Dec 2019

Bibliographical note

Publisher Copyright:
© 2019, The Author(s).

Fingerprint

Dive into the research topics of 'NV center based nano-NMR enhanced by deep learning'. Together they form a unique fingerprint.

Cite this