TY - JOUR

T1 - Observing symmetry-broken optimal paths of the stationary Kardar-Parisi-Zhang interface via a large-deviation sampling of directed polymers in random media

AU - Hartmann, Alexander K.

AU - Meerson, Baruch

AU - Sasorov, Pavel

N1 - Publisher Copyright:
© 2021 American Physical Society.

PY - 2021/11

Y1 - 2021/11

N2 - Consider the short-time probability distribution P(H,t) of the one-point interface height difference h(x=0,τ=t)-h(x=0,τ=0)=H of the stationary interface h(x,τ) described by the Kardar-Parisi-Zhang (KPZ) equation. It was previously shown that the optimal path, the most probable history of the interface h(x,τ) which dominates the upper tail of P(H,t), is described by any of two ramplike structures of h(x,τ) traveling either to the left, or to the right. These two solutions emerge, at a critical value of H, via a spontaneous breaking of the mirror symmetry x↔-x of the optimal path, and this symmetry breaking is responsible for a second-order dynamical phase transition in the system. We simulate the interface configurations numerically by employing a large-deviation Monte Carlo sampling algorithm in conjunction with the mapping between the KPZ interface and the directed polymer in a random potential at high temperature. This allows us to observe the optimal paths, which determine each of the two tails of P(H,t), down to probability densities as small as 10-500. At short times we observe mirror-symmetry-broken traveling optimal paths for the upper tail, and a single mirror-symmetric path for the lower tail, in good quantitative agreement with analytical predictions. At long times, even at moderate values of H, where the optimal fluctuation method is not supposed to apply, we still observe two well-defined dominating paths. Each of them violates the mirror symmetry x↔-x and is a mirror image of the other.

AB - Consider the short-time probability distribution P(H,t) of the one-point interface height difference h(x=0,τ=t)-h(x=0,τ=0)=H of the stationary interface h(x,τ) described by the Kardar-Parisi-Zhang (KPZ) equation. It was previously shown that the optimal path, the most probable history of the interface h(x,τ) which dominates the upper tail of P(H,t), is described by any of two ramplike structures of h(x,τ) traveling either to the left, or to the right. These two solutions emerge, at a critical value of H, via a spontaneous breaking of the mirror symmetry x↔-x of the optimal path, and this symmetry breaking is responsible for a second-order dynamical phase transition in the system. We simulate the interface configurations numerically by employing a large-deviation Monte Carlo sampling algorithm in conjunction with the mapping between the KPZ interface and the directed polymer in a random potential at high temperature. This allows us to observe the optimal paths, which determine each of the two tails of P(H,t), down to probability densities as small as 10-500. At short times we observe mirror-symmetry-broken traveling optimal paths for the upper tail, and a single mirror-symmetric path for the lower tail, in good quantitative agreement with analytical predictions. At long times, even at moderate values of H, where the optimal fluctuation method is not supposed to apply, we still observe two well-defined dominating paths. Each of them violates the mirror symmetry x↔-x and is a mirror image of the other.

UR - http://www.scopus.com/inward/record.url?scp=85120377657&partnerID=8YFLogxK

U2 - 10.1103/PhysRevE.104.054125

DO - 10.1103/PhysRevE.104.054125

M3 - Article

C2 - 34942795

AN - SCOPUS:85120377657

SN - 2470-0045

VL - 104

JO - Physical Review E

JF - Physical Review E

IS - 5

M1 - 054125

ER -