TY - JOUR
T1 - Odors enhance slow-wave activity in non-rapid eye movement sleep
AU - Perl, Ofer
AU - Arzi, Anat
AU - Sela, Lee
AU - Secundo, Lavi
AU - Holtzman, Yael
AU - Samnon, Perry
AU - Oksenberg, Arie
AU - Sobel, Noam
AU - Hairston, Ilana S.
N1 - Publisher Copyright:
© 2016 the American Physiological Society.
PY - 2016/5/1
Y1 - 2016/5/1
N2 - Most forms of suprathreshold sensory stimulation perturb sleep. In contrast, presentation of pure olfactory or mild trigeminal odorants does not lead to behavioral or physiological arousal. In fact, some odors promote objective and subjective measures of sleep quality in humans and rodents. The brain mechanisms underlying these sleep-protective properties of olfaction remain unclear. Slow oscillations in the electroencephalogram (EEG) are a marker of deep sleep, and K complexes (KCs) are an EEG marker of cortical response to sensory interference. We therefore hypothesized that odorants presented during sleep will increase power in slow EEG oscillations. Moreover, given that odorants do not drive sleep interruption, we hypothesized that unlike other sensory stimuli odorants would not drive KCs. To test these hypotheses we used polysomnography to measure sleep in 34 healthy subjects (19 women, 15 men; mean age 26.5 ± 2.5 yr) who were repeatedly presented with odor stimuli via a computer-controlled air-dilution olfactometer over the course of a single night. Each participant was exposed to one of four odorants, lavender oil (n = 13), vetiver oil (n = 5), vanillin (n = 12), or ammonium sulfide (n = 4), for durations of 5, 10, and 20 s every 9-15 min. Consistent with our hypotheses, we found that odor presentation during sleep enhanced the power of delta (0.5-4 Hz) and slow spindle (9-12 Hz) frequencies during non-rapid eye movement sleep. The increase was proportionate to odor duration. In addition, odor presentation did not modulate the occurrence of KCs. These findings imply a sleep-promoting olfactory mechanism that may deepen sleep through driving increased slow-frequency oscillations.
AB - Most forms of suprathreshold sensory stimulation perturb sleep. In contrast, presentation of pure olfactory or mild trigeminal odorants does not lead to behavioral or physiological arousal. In fact, some odors promote objective and subjective measures of sleep quality in humans and rodents. The brain mechanisms underlying these sleep-protective properties of olfaction remain unclear. Slow oscillations in the electroencephalogram (EEG) are a marker of deep sleep, and K complexes (KCs) are an EEG marker of cortical response to sensory interference. We therefore hypothesized that odorants presented during sleep will increase power in slow EEG oscillations. Moreover, given that odorants do not drive sleep interruption, we hypothesized that unlike other sensory stimuli odorants would not drive KCs. To test these hypotheses we used polysomnography to measure sleep in 34 healthy subjects (19 women, 15 men; mean age 26.5 ± 2.5 yr) who were repeatedly presented with odor stimuli via a computer-controlled air-dilution olfactometer over the course of a single night. Each participant was exposed to one of four odorants, lavender oil (n = 13), vetiver oil (n = 5), vanillin (n = 12), or ammonium sulfide (n = 4), for durations of 5, 10, and 20 s every 9-15 min. Consistent with our hypotheses, we found that odor presentation during sleep enhanced the power of delta (0.5-4 Hz) and slow spindle (9-12 Hz) frequencies during non-rapid eye movement sleep. The increase was proportionate to odor duration. In addition, odor presentation did not modulate the occurrence of KCs. These findings imply a sleep-promoting olfactory mechanism that may deepen sleep through driving increased slow-frequency oscillations.
KW - Odor
KW - Olfaction
KW - Sleep
KW - Smell
UR - http://www.scopus.com/inward/record.url?scp=84984663085&partnerID=8YFLogxK
U2 - 10.1152/jn.01001.2015
DO - 10.1152/jn.01001.2015
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 26888107
AN - SCOPUS:84984663085
SN - 0022-3077
VL - 115
SP - 2294
EP - 2302
JO - Journal of Neurophysiology
JF - Journal of Neurophysiology
IS - 5
ER -