On dice and coins: Models of computation for random generation

David Feldman, Russell Impagliazzo, Mom Naor, Noam Nisan, Steven Rudich, Adi Shamir

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


To examine the concept of random generation in bounded, as opposed to expected, polynomial time, a model of a probabilistic Turing machine (PTM) with the ability to make random choices with any (small) rational bias is necessary. This ability is equivalent to that of being able to simulate rolling any k-sided die (where [k] is polynomial in the length of the input). We would like to minimize the amount of hardware required for a machine with this capability. This leads to the problem of efficiently simulating a family of dice with a few different types of biased coins as possible. In the special case of simulating one n-sided die, we prove that only two types of biased coins are necessary, which can be reduced to one if we allow irrationally biased coins. This simulation is efficient, taking O(log n) coin flips. For the general case we get a tight time vs number of biases tradeoff; for example, with O(log n) different biases, we can simulate, for any i < n, an i-sided die in O(log n) coin flips.

Original languageAmerican English
Pages (from-to)159-174
Number of pages16
JournalInformation and Computation
Issue number2
StatePublished - Jun 1993


Dive into the research topics of 'On dice and coins: Models of computation for random generation'. Together they form a unique fingerprint.

Cite this