TY - JOUR
T1 - On nonexistence and nonuniqueness of solutions of the Cauchy problem for a semilinear parabolic equation
AU - Ben-Artzi, Matania
AU - Souplet, Philippe
AU - Weissler, Fred B.
PY - 1999/9/1
Y1 - 1999/9/1
N2 - We study the local Cauchy problem for the semilinear parabolic equation ut - Δu = a |∇u|p, t > 0, x ∈ ℝN, with p ≥ 1, a ≠ 0, and initial data in Lq(ℝN), 1 ≤ q < ∞. After showing local nonexistence when p ≥ 2, we establish the existence of a critical exponent qc = N(p - 1)/(2 - p) for p < 2, such that the problem is well posed in Lq if q ≥ qc, and ill posed, due to nonuniqueness, if 1 ≤ q < qc (implying, in particular, p > (N + 2)/(N + 1)). To prove nonuniqueness, for a > 0, we construct a self-similar, positive, regular solution u, such that limt↓0 ∥u(t)∥Lq = 0.
AB - We study the local Cauchy problem for the semilinear parabolic equation ut - Δu = a |∇u|p, t > 0, x ∈ ℝN, with p ≥ 1, a ≠ 0, and initial data in Lq(ℝN), 1 ≤ q < ∞. After showing local nonexistence when p ≥ 2, we establish the existence of a critical exponent qc = N(p - 1)/(2 - p) for p < 2, such that the problem is well posed in Lq if q ≥ qc, and ill posed, due to nonuniqueness, if 1 ≤ q < qc (implying, in particular, p > (N + 2)/(N + 1)). To prove nonuniqueness, for a > 0, we construct a self-similar, positive, regular solution u, such that limt↓0 ∥u(t)∥Lq = 0.
UR - http://www.scopus.com/inward/record.url?scp=0003376917&partnerID=8YFLogxK
U2 - 10.1016/S0764-4442(00)88608-5
DO - 10.1016/S0764-4442(00)88608-5
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:0003376917
SN - 0764-4442
VL - 329
SP - 371
EP - 376
JO - Comptes Rendus de l'Academie des Sciences - Series I: Mathematics
JF - Comptes Rendus de l'Academie des Sciences - Series I: Mathematics
IS - 5
ER -