TY - GEN

T1 - On the complexity of commuting local Hamiltonians, and tight conditions for topological order in such systems

AU - Aharonov, Dorit

AU - Eldar, Lior

PY - 2011

Y1 - 2011

N2 - The local Hamiltonian problem plays the equivalent role of SAT in quantum complexity theory. Understanding the complexity of the intermediate case in which the constraints are quantum but all local terms in the Hamiltonian commute, is of importance for conceptual, physical and computational complexity reasons. Bravyi and Vyalyi showed in 2003, using a clever application of the representation theory of C*-algebras, that if the terms in the Hamiltonian are all two-local, the problem is in NP, and the entanglement in the ground states is local. The general case remained open since then. In this paper we extend this result beyond the two-local case, to the case of three-qubit interactions. We then extend our results even further, and show that NP verification is possible for three-wise interaction between qutrits as well, as long as the interaction graph is planar and also "nearly Euclidean", in some well-defined sense. The proofs imply that in all such systems, the entanglement in the ground states is local. These extensions imply an intriguing sharp transition phenomenon in commuting Hamiltonian systems: the ground spaces of 3-local "physical", systems based on qubits and qutrits are diagonalizable by a basis whose entanglement is highly local, while even slightly more involved interactions (the particle dimensionality or the locality of the interaction is larger) already exhibit an important long-range entanglement property called Topological Order. Our results thus imply that Kitaev's celebrated Toric code construction is, in a well defined sense, optimal as a construction of Topological Order based on commuting Hamiltonians.

AB - The local Hamiltonian problem plays the equivalent role of SAT in quantum complexity theory. Understanding the complexity of the intermediate case in which the constraints are quantum but all local terms in the Hamiltonian commute, is of importance for conceptual, physical and computational complexity reasons. Bravyi and Vyalyi showed in 2003, using a clever application of the representation theory of C*-algebras, that if the terms in the Hamiltonian are all two-local, the problem is in NP, and the entanglement in the ground states is local. The general case remained open since then. In this paper we extend this result beyond the two-local case, to the case of three-qubit interactions. We then extend our results even further, and show that NP verification is possible for three-wise interaction between qutrits as well, as long as the interaction graph is planar and also "nearly Euclidean", in some well-defined sense. The proofs imply that in all such systems, the entanglement in the ground states is local. These extensions imply an intriguing sharp transition phenomenon in commuting Hamiltonian systems: the ground spaces of 3-local "physical", systems based on qubits and qutrits are diagonalizable by a basis whose entanglement is highly local, while even slightly more involved interactions (the particle dimensionality or the locality of the interaction is larger) already exhibit an important long-range entanglement property called Topological Order. Our results thus imply that Kitaev's celebrated Toric code construction is, in a well defined sense, optimal as a construction of Topological Order based on commuting Hamiltonians.

UR - http://www.scopus.com/inward/record.url?scp=84863324586&partnerID=8YFLogxK

U2 - 10.1109/FOCS.2011.58

DO - 10.1109/FOCS.2011.58

M3 - Conference contribution

AN - SCOPUS:84863324586

SN - 9780769545714

T3 - Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS

SP - 334

EP - 343

BT - Proceedings - 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011

T2 - 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011

Y2 - 22 October 2011 through 25 October 2011

ER -