Paul M. Vreeswijk, Giorgos Leloudas, Avishay Gal-Yam, Annalisa De Cia, Daniel A. Perley, Robert M. Quimby, Roni Waldman, Mark Sullivan, Lin Yan, Eran O. Ofek, Christoffer Fremling, Francesco Taddia, Jesper Sollerman, Stefano Valenti, Iair Arcavi, D. Andrew Howell, Alexei V. Filippenko, S. Bradley Cenko, Ofer Yaron, Mansi M. KasliwalYi Cao, Sagi Ben-Ami, Assaf Horesh, Adam Rubin, Ragnhild Lunnan, Peter E. Nugent, Russ Laher, Umaa D. Rebbapragada, Przemysław Woźniak, Shrinivas R. Kulkarni

Research output: Contribution to journalArticlepeer-review

56 Scopus citations


We present the light curves of the hydrogen-poor superluminous supernovae (SLSNe I) PTF 12dam and iPTF 13dcc, discovered by the (intermediate) Palomar Transient Factory. Both show excess emission at early times and a slowly declining light curve at late times. The early bump in PTF 12dam is very similar in duration (∼10 days) and brightness relative to the main peak (2-3 mag fainter) compared to that observed in other SLSNe I. In contrast, the long-duration (>30 days) early excess emission in iPTF 13dcc, whose brightness competes with that of the main peak, appears to be of a different nature. We construct bolometric light curves for both targets, and fit a variety of light-curve models to both the early bump and main peak in an attempt to understand the nature of these explosions. Even though the slope of the late-time decline in the light curves of both SLSNe is suggestively close to that expected from the radioactive decay of 56Ni and 56Co, the amount of nickel required to power the full light curves is too large considering the estimated ejecta mass. The magnetar model including an increasing escape fraction provides a reasonable description of the PTF 12dam observations. However, neither the basic nor the double-peaked magnetar model is capable of reproducing the light curve of iPTF 13dcc. A model combining a shock breakout in an extended envelope with late-time magnetar energy injection provides a reasonable fit to the iPTF 13dcc observations. Finally, we find that the light curves of both PTF 12dam and iPTF 13dcc can be adequately fit with the model involving interaction with the circumstellar medium.

Original languageAmerican English
Article number58
JournalAstrophysical Journal
Issue number1
StatePublished - 20 Jan 2017
Externally publishedYes

Bibliographical note

Funding Information:
Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. Research at Lick Observatory is partially supported by a generous gift from Google. These results also made use of the Discovery Channel Telescope at Lowell Observatory. Lowell is a private, nonprofit institution dedicated to astrophysical research and public appreciation of astronomy and operates the DCT in partnership with Boston University, the University of Maryland, the University of Toledo, Northern Arizona University, and Yale University. LMI construction was supported by a grant AST- 1005313 from the National Science Foundation.

Publisher Copyright:
© 2017. The American Astronomical Society. All rights reserved.


  • supernovae: general
  • supernovae: individual (PTF 12dam, iPTF 13dcc)


Dive into the research topics of 'ON the EARLY-TIME EXCESS EMISSION in HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE'. Together they form a unique fingerprint.

Cite this