On the influence of North Pacific sea surface temperature on the Arctic winter climate

M. M. Hurwitz*, P. A. Newman, C. I. Garfinkel

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

86 Scopus citations


Differences between two ensembles of Goddard Earth Observing System Chemistry-Climate Model simulations isolate the impact of North Pacific sea surface temperatures (SSTs) on the Arctic winter climate. One ensemble of extended winter season forecasts is forced by unusually high SSTs in the North Pacific, while in the second ensemble SSTs in the North Pacific are unusually low. High - Low differences are consistent with a strengthened Western Pacific atmospheric teleconnection pattern, and in particular, a weakening of the Aleutian low. This relative change in tropospheric circulation inhibits planetary wave propagation into the stratosphere, in turn reducing polar stratospheric temperature in mid- and late winter. The number of winters with sudden stratospheric warmings is approximately tripled in the Low ensemble as compared with the High ensemble. Enhanced North Pacific SSTs, and thus a more stable and persistent Arctic vortex, lead to a relative decrease in lower stratospheric ozone in spring, affecting the April clear-sky UV index at Northern Hemisphere midlatitudes.

Original languageAmerican English
Article numberD19110
JournalJournal of Geophysical Research
Issue number19
StatePublished - 2012
Externally publishedYes


Dive into the research topics of 'On the influence of North Pacific sea surface temperature on the Arctic winter climate'. Together they form a unique fingerprint.

Cite this