Abstract
Combining two results from machine learning theory we prove that a formula is NIP if and only if it satisfies uniform definability of types over finite sets (UDTFS). This settles a conjecture of Laskowski.
Original language | English |
---|---|
Article number | 2150015 |
Pages (from-to) | 2150015:1-2150015:13 |
Number of pages | 13 |
Journal | Journal of Mathematical Logic |
Volume | 21 |
Issue number | 3 |
DOIs | |
State | Published - 1 Dec 2021 |
Bibliographical note
Publisher Copyright:© 2021 World Scientific Publishing Company.
Keywords
- Local UDTFS
- local NIP
- recursive teaching dimension
- sample compression schemes