On weak rigidity and weakly mixing enveloping semigroups

Ethan Akin, Eli Glasne, Benjamin Weiss

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review

2 Scopus citations

Abstract

The question we deal with here, which was presented to us by Joe Auslander and Anima Nagar, is whether there is a nontrivial cascade (X, T) whose enveloping semigroup, as a dynamical system, is topologically weakly mixing (WM). After an introductory section recalling some definitions and classic results, we establish some necessary conditions for this to happen, and in the final section we show, using Ratners theory, that the enveloping semigroup of the time one map of a classical horocycle flow is weakly mixing.

Original languageEnglish
Title of host publicationContemporary Mathematics
PublisherAmerican Mathematical Society
Pages181-190
Number of pages10
DOIs
StatePublished - 2020

Publication series

NameContemporary Mathematics
Volume744
ISSN (Print)0271-4132
ISSN (Electronic)1098-3627

Bibliographical note

Publisher Copyright:
© 2020 American Mathematical Society.

Keywords

  • Enveloping semigroup
  • Horocyclic flow
  • Weak mixing
  • Weak rigidity

Fingerprint

Dive into the research topics of 'On weak rigidity and weakly mixing enveloping semigroups'. Together they form a unique fingerprint.

Cite this