TY - JOUR
T1 - Online learning and online convex optimization
AU - Shalev-Shwartz, Shai
PY - 2011
Y1 - 2011
N2 - Online learning is a well established learning paradigm which has both theoretical and practical appeals. The goal of online learning is to make a sequence of accurate predictions given knowledge of the correct answer to previous prediction tasks and possibly additional available information. Online learning has been studied in several research fields including game theory, information theory, and machine learning. It also became of great interest to practitioners due the recent emergence of large scale applications such as online advertisement placement and online web ranking. In this survey we provide a modern overview of online learning. Our goal is to give the reader a sense of some of the interesting ideas and in particular to underscore the centrality of convexity in deriving efficient online learning algorithms. We do not mean to be comprehensive but rather to give a high-level, rigorous yet easy to follow, survey.
AB - Online learning is a well established learning paradigm which has both theoretical and practical appeals. The goal of online learning is to make a sequence of accurate predictions given knowledge of the correct answer to previous prediction tasks and possibly additional available information. Online learning has been studied in several research fields including game theory, information theory, and machine learning. It also became of great interest to practitioners due the recent emergence of large scale applications such as online advertisement placement and online web ranking. In this survey we provide a modern overview of online learning. Our goal is to give the reader a sense of some of the interesting ideas and in particular to underscore the centrality of convexity in deriving efficient online learning algorithms. We do not mean to be comprehensive but rather to give a high-level, rigorous yet easy to follow, survey.
UR - http://www.scopus.com/inward/record.url?scp=84859418371&partnerID=8YFLogxK
U2 - 10.1561/2200000018
DO - 10.1561/2200000018
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.systematicreview???
AN - SCOPUS:84859418371
SN - 1935-8237
VL - 4
SP - 107
EP - 194
JO - Foundations and Trends in Machine Learning
JF - Foundations and Trends in Machine Learning
IS - 2
ER -