Open Search Strategy for Inferring the Masses of Cross-Link Adducts on Proteins

Moriya Slavin, Tamar Tayri-Wilk, Hala Milhem, Nir Kalisman*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Scopus citations


Development of new reagents for protein cross-linking is constantly ongoing. The chemical formulas for the linker adducts formed by these reagents are usually deduced from expert knowledge and then validated by mass spectrometry. Clearly, it would be more rigorous to infer the chemical compositions of the adducts directly from the data without any prior assumptions on their chemistries. Unfortunately, the analysis tools that are currently available to detect chemical modifications on linear peptides are not applicable to the case of two cross-linked peptides. Here, we show that an adaptation of the open search strategy that works on linear peptides can be used to characterize cross-link modifications in pairs of peptides. We benchmark our approach by correctly inferring the linker masses of two well-known reagents, DSS and formaldehyde, to accuracies of a few parts per million. We then investigate the cross-linking chemistries of two poorly characterized reagents: EMCS and glutaraldehyde. In the case of EMCS, we find that the expected cross-linking chemistry is accompanied by a competing chemistry that targets other amino acid types. In the case of glutaraldehyde, we find that the chemical formula of the dominant linker is C5H4, which indicates a ringed aromatic structure. These results demonstrate how, with very little effort, our approach can yield nontrivial insights to better characterize new cross-linkers.

Original languageAmerican English
Pages (from-to)15899-15907
Number of pages9
JournalAnalytical Chemistry
Issue number24
StatePublished - 15 Dec 2020

Bibliographical note

Publisher Copyright:
© 2020 ACS. All rights reserved.


Dive into the research topics of 'Open Search Strategy for Inferring the Masses of Cross-Link Adducts on Proteins'. Together they form a unique fingerprint.

Cite this