TY - JOUR
T1 - Open Search Strategy for Inferring the Masses of Cross-Link Adducts on Proteins
AU - Slavin, Moriya
AU - Tayri-Wilk, Tamar
AU - Milhem, Hala
AU - Kalisman, Nir
N1 - Publisher Copyright:
© 2020 ACS. All rights reserved.
PY - 2020/12/15
Y1 - 2020/12/15
N2 - Development of new reagents for protein cross-linking is constantly ongoing. The chemical formulas for the linker adducts formed by these reagents are usually deduced from expert knowledge and then validated by mass spectrometry. Clearly, it would be more rigorous to infer the chemical compositions of the adducts directly from the data without any prior assumptions on their chemistries. Unfortunately, the analysis tools that are currently available to detect chemical modifications on linear peptides are not applicable to the case of two cross-linked peptides. Here, we show that an adaptation of the open search strategy that works on linear peptides can be used to characterize cross-link modifications in pairs of peptides. We benchmark our approach by correctly inferring the linker masses of two well-known reagents, DSS and formaldehyde, to accuracies of a few parts per million. We then investigate the cross-linking chemistries of two poorly characterized reagents: EMCS and glutaraldehyde. In the case of EMCS, we find that the expected cross-linking chemistry is accompanied by a competing chemistry that targets other amino acid types. In the case of glutaraldehyde, we find that the chemical formula of the dominant linker is C5H4, which indicates a ringed aromatic structure. These results demonstrate how, with very little effort, our approach can yield nontrivial insights to better characterize new cross-linkers.
AB - Development of new reagents for protein cross-linking is constantly ongoing. The chemical formulas for the linker adducts formed by these reagents are usually deduced from expert knowledge and then validated by mass spectrometry. Clearly, it would be more rigorous to infer the chemical compositions of the adducts directly from the data without any prior assumptions on their chemistries. Unfortunately, the analysis tools that are currently available to detect chemical modifications on linear peptides are not applicable to the case of two cross-linked peptides. Here, we show that an adaptation of the open search strategy that works on linear peptides can be used to characterize cross-link modifications in pairs of peptides. We benchmark our approach by correctly inferring the linker masses of two well-known reagents, DSS and formaldehyde, to accuracies of a few parts per million. We then investigate the cross-linking chemistries of two poorly characterized reagents: EMCS and glutaraldehyde. In the case of EMCS, we find that the expected cross-linking chemistry is accompanied by a competing chemistry that targets other amino acid types. In the case of glutaraldehyde, we find that the chemical formula of the dominant linker is C5H4, which indicates a ringed aromatic structure. These results demonstrate how, with very little effort, our approach can yield nontrivial insights to better characterize new cross-linkers.
UR - http://www.scopus.com/inward/record.url?scp=85097823832&partnerID=8YFLogxK
U2 - 10.1021/acs.analchem.0c03292
DO - 10.1021/acs.analchem.0c03292
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85097823832
SN - 0003-2700
VL - 92
SP - 15899
EP - 15907
JO - Analytical Chemistry
JF - Analytical Chemistry
IS - 24
ER -