Optical backaction-evading measurement of a mechanical oscillator

Itay Shomroni*, Liu Qiu, Daniel Malz, Andreas Nunnenkamp, Tobias J. Kippenberg

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

47 Scopus citations


Quantum mechanics imposes a limit on the precision of a continuous position measurement of a harmonic oscillator, due to backaction arising from quantum fluctuations in the measurement field. This standard quantum limit can be surpassed by monitoring only one of the two non-commuting quadratures of the motion, known as backaction-evading measurement. This technique has not been implemented using optical interferometers to date. Here we demonstrate, in a cavity optomechanical system operating in the optical domain, a continuous two-tone backaction-evading measurement of a localized gigahertz-frequency mechanical mode of a photonic-crystal nanobeam cryogenically and optomechanically cooled close to the ground state. Employing quantum-limited optical heterodyne detection, we explicitly show the transition from conventional to backaction-evading measurement. We observe up to 0.67 dB (14%) reduction of total measurement noise, thereby demonstrating the viability of backaction-evading measurements in nanomechanical resonators for optical ultrasensitive measurements of motion and force.

Original languageAmerican English
Article number2086
JournalNature Communications
Issue number1
StatePublished - 1 Dec 2019
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2019, The Author(s).


Dive into the research topics of 'Optical backaction-evading measurement of a mechanical oscillator'. Together they form a unique fingerprint.

Cite this