TY - JOUR
T1 - Optimal control of strong-field ionization with time-dependent density-functional theory
AU - Hellgren, Maria
AU - Räsänen, Esa
AU - Gross, E. K.U.
PY - 2013/7/19
Y1 - 2013/7/19
N2 - We show that quantum optimal control theory (OCT) and time-dependent density-functional theory (TDDFT) can be combined to provide realistic femtosecond laser pulses for an enhanced ionization yield in few-electron systems. Using a one-dimensional model H2 molecule as a test case, the optimized laser pulse from the numerically exact scheme is compared to pulses obtained from OCT+TDDFT within the TD exact-exchange (TDEXX) and the TD local-density approximation (TDLDA). We find that the TDDFT pulses produce an ionization yield of up to 50% when applied to the exact system. In comparison, pulses with a single frequency but the same fluence typically reach to yields around 5%-15%, unless the frequency is carefully tuned into a Fano-type resonance that leads to ∼30% yield. On the other hand, optimization within the exact system alone leads to yields higher than 80%, demonstrating that correlation effects beyond the TDEXX and TDLDA can give rise to even more efficient ionization mechanisms.
AB - We show that quantum optimal control theory (OCT) and time-dependent density-functional theory (TDDFT) can be combined to provide realistic femtosecond laser pulses for an enhanced ionization yield in few-electron systems. Using a one-dimensional model H2 molecule as a test case, the optimized laser pulse from the numerically exact scheme is compared to pulses obtained from OCT+TDDFT within the TD exact-exchange (TDEXX) and the TD local-density approximation (TDLDA). We find that the TDDFT pulses produce an ionization yield of up to 50% when applied to the exact system. In comparison, pulses with a single frequency but the same fluence typically reach to yields around 5%-15%, unless the frequency is carefully tuned into a Fano-type resonance that leads to ∼30% yield. On the other hand, optimization within the exact system alone leads to yields higher than 80%, demonstrating that correlation effects beyond the TDEXX and TDLDA can give rise to even more efficient ionization mechanisms.
UR - http://www.scopus.com/inward/record.url?scp=84880646042&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.88.013414
DO - 10.1103/PhysRevA.88.013414
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84880646042
SN - 1050-2947
VL - 88
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 1
M1 - 013414
ER -