Abstract
We focus on summarizing hierarchical data by adapting the well-known notion of end biased-histograms to trees. Over relational data, such histograms have been well-studied, as they have a good balance between accuracy and space requirements. Extending histograms to tree data is a non-trivial problem, due to the need to preserve and leverage structure in the output. We develop a fast greedy algorithm, and a polynomial algorithm that finds provably optimal hierarchical end-biased histograms. Preliminary experimentation demonstrates that our histograms work well in practice.
Original language | English |
---|---|
Title of host publication | CIKM 2020 - Proceedings of the 29th ACM International Conference on Information and Knowledge Management |
Publisher | Association for Computing Machinery |
Pages | 3261-3264 |
Number of pages | 4 |
ISBN (Electronic) | 9781450368599 |
DOIs | |
State | Published - 19 Oct 2020 |
Event | 29th ACM International Conference on Information and Knowledge Management, CIKM 2020 - Virtual, Online, Ireland Duration: 19 Oct 2020 → 23 Oct 2020 |
Publication series
Name | International Conference on Information and Knowledge Management, Proceedings |
---|
Conference
Conference | 29th ACM International Conference on Information and Knowledge Management, CIKM 2020 |
---|---|
Country/Territory | Ireland |
City | Virtual, Online |
Period | 19/10/20 → 23/10/20 |
Bibliographical note
Publisher Copyright:© 2020 ACM.
Keywords
- end-biased
- hierarchical data
- histograms